K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

a) \(\sqrt{x-5}=3\)

\(x-5=9\)

\(x=14\)

b) Vì \(\sqrt{x-10}\) ≥0

⇒không có x thỏa mãn

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(2x-1=7\)

\(2x=8\)

\(x=4\)

28 tháng 9 2021

Bài 3

a) \(\sqrt{x-5}=3\)

\(\Rightarrow x-5=9\)

\(\Rightarrow x=14\)

b) \(\sqrt{x-10}=-21\)

\(\Rightarrow x\in\varnothing\)

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(\Rightarrow2x-1=7\)

\(\Rightarrow2x=8\)

\(\Rightarrow x=4\)

 

20 tháng 10 2021

Nhờ mn giúp em với ạ, mn xem em làm bài đúng ko ạ?

20 tháng 10 2021

Câu 12.

   \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)

\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)

\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)

\(=8\sqrt{a}\)

 

 

30 tháng 9 2021

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

30 tháng 9 2021

\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)

1 tháng 11 2023

Bài `13`

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)

1 tháng 11 2023

giải hết giùm em luôn được không ạ, em cảm ơn.

\(\widehat{E}=53^0\)

6 tháng 11 2021

Áp dụng tslg trong tam giác DEF vuông tại D:

\(tanE=\dfrac{DF}{ED}=\dfrac{4}{3}\Rightarrow\widehat{E}\approx53^0\)

16 tháng 1 2022

1 bài 1 thôi bạn

Câu 3: 

a: \(\Leftrightarrow\left(-m\right)^2-4\cdot2\cdot2=0\)

\(\Leftrightarrow m^2=16\)

hay \(m\in\left\{4;-4\right\}\)

b: \(\Leftrightarrow4-4\cdot3\cdot\left(m-1\right)=0\)

=>4-12(m-1)=0

=>4-12m+12=0

=>-12m=-16

hay m=4/3

AH
Akai Haruma
Giáo viên
1 tháng 3 2022

Lời giải:
$\Delta'=(m+1)^2-(2m-3)=m^2+4>0$ với mọi $m$ nên pt luôn có 2 nghiệm pb với mọi $m$ 

Áp dụng định lý Viet: 

$x_1+x_2=2(m+1)$

$x_1x_2=2m-3$
Để $x_1<1<x_2$

$\Leftrightarrow (x_1-1)(x_2-1)<0$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1<0$

$\Leftrightarrow 2m-3-2(m+1)+1<0$

$\Leftrightarrow -3-2+1<0$

$\Leftrightarrow -4<0$ (luôn đúng) 

Vậy PT luôn có 2 nghiệm pb thỏa mãn đề với mọi $m\in\mathbb{R}$

28 tháng 2 2022

x2-(m-1)x+m-2=0(1)

Để phương trình có hai nghiệm phân biệt thì Δ=(-m+1)2-4(m-2)

                                                                          =m2-2m+1-4m+8

                                                                          =m2-6m+9

                                                                          =(m-3)2≥0 với mọi m

⇒phương trình luôn có hai nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\begin{cases} x_1+x_2=m-2 \\ x_1.x_2=m-1 \end{cases}\)(2)

TH1:x1,x2 là hai cạnh góc vuông

⇒x1=x2

Từ (2)\(\begin{cases} x_1+x_1=m-2 \\ x_1^2=m-1 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_1=\frac{m-1}{2}\\ x_1=\sqrt{m-2} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{2}\)=\(\sqrt{m-2}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{4}\)=m-2

\(\Leftrightarrow\)m2-6m+9=0

\(\Leftrightarrow\)(m-3)2=0

\(\Leftrightarrow\)m=3

TH2:x1 là cạnh huyền,x2 là cạnh góc vuông

⇒x1=\(\sqrt{2}\)x2

Từ (2)⇒\(\begin{cases} \sqrt{2} x_2+x_2=m-1 \\ \sqrt{2} x_2^2=m-2 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_2= \frac{m-1}{1+\sqrt{2}} \\ x_2=\sqrt{\frac{m-2}{\sqrt{2}}} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{1+\sqrt{2}}\)=\(\sqrt{\dfrac{m-2}{\sqrt{2}}}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{3+2\sqrt{2}}\)=\(\dfrac{m-2}{\sqrt{2}}\)

\(\Leftrightarrow\)\(\left(3+2\sqrt{2}\right)\)\(m\)\(-6-2\sqrt{2}\)\(=\sqrt{2}m^2-2\sqrt{2}m+\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}m^2-\left(4\sqrt{2}+3\right)m+3\sqrt{2}+6=0\)

\(\Leftrightarrow\)rồi m bằng bao nhiêu thì tự giải nhé mệt r