K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔOAB cân tại O

mà OH là đường trung tuyến

nên OH\(\perp\)AB

Ta có: ΔOHA vuông tại H

=>\(HA^2+HO^2=OA^2\)

=>\(HA^2=5^2-3^2=16\)

=>\(HA=\sqrt{16}=4\left(cm\right)\)

H là trung điểm của AB

=>AB=2*AH=8(cm)

30 tháng 12 2023

a: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>\(HA=HB=\dfrac{AB}{2}=2,4\left(cm\right)\)

Ta có: ΔOHA vuông tại H

=>\(OH^2+HA^2=OA^2\)

=>\(OH^2=3^2-2,4^2=3,24\)

=>\(OH=\sqrt{3,24}=1,8\left(cm\right)\)

OH+HC=OC

=>HC=OC-OH=5-1,8=3,2(cm)

b: Ta có: ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=2,4^2+3,2^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOC có \(AO^2+AC^2=OC^2\)

nên ΔAOC vuông tại A

=>CA\(\perp\)OA tại A

=>CA là tiếp tuyến của (O)

b: Xét ΔCAB có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAB cân tại C

=>CA=CB

Xét ΔOAC và ΔOBC có

OA=OB

AC=BC

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

Xét (O) có

EA,ED là các tiếp tuyến

Do đó: EA=ED

Xét (O) có

FD,FB là các tiếp tuyến

Do đó: FD=FB

Chu vi tam giác CEF là:

\(CE+EF+CF\)

=CE+ED+DF+CF

=CE+EA+CF+FB

=CA+CB

=2CA

=8(cm)

23 tháng 9 2019

bạn học đến đg tròn rồi à

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:
Tam giác $OAB$ cân tại $O$ (do $OA=OB=R$) nên đường trung tuyến $OH$ đồng thời là đường cao.

$\Rightarrow OH\perp AB$

$AH=\frac{1}{2}AB=8$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $HAO$:

$R=AO=\sqrt{OH^2+AH^2}=\sqrt{6^2+8^2}=10$ (cm)

Đáp án D.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Hình vẽ:

26 tháng 12 2019

a, Tính được AH = 5 . Từ đó suy ra AB=  2 5 và OM=4,5cm

b, Với ∆MAB cân tại MH là trung tuyến vừa là đường cao;

Ta có ∆MAO = ∆MBO => MBOB => MB là tiếp tuyến của (O)

c, Dễ thấy  M A 2   =   M H . M O  (Theo hệ thức lượng trong tam giác vuông)

Chứng minh được: ∆MBE:∆MBD

=>  M B 2 = M E . M D = M A 2

=> MH.MO = ME.MD

=> ∆EHM:∆ODM (c.g.c)

=>  E H M ^ = O D M ^

d, Kẻ BK ⊥ AD

Ta có: S H O A = 1 2 S A B D = 1 4 B K . A D

Vì BK ≤ 3 =>  S H O A lớn nhất khi B là điểm chính giữa cung AD khi đó AM = OA = 3