K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:
Tam giác $OAB$ cân tại $O$ (do $OA=OB=R$) nên đường trung tuyến $OH$ đồng thời là đường cao.

$\Rightarrow OH\perp AB$

$AH=\frac{1}{2}AB=8$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $HAO$:

$R=AO=\sqrt{OH^2+AH^2}=\sqrt{6^2+8^2}=10$ (cm)

Đáp án D.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Hình vẽ:

NV
5 tháng 8 2021

Do I là trung điểm AB \(\Rightarrow OI\perp AB\)

\(AI=\dfrac{1}{2}AB=3\)

Trong tam giác vuông OAI, áp dụng Pitago:

\(OI=\sqrt{OA^2-AI^2}=\sqrt{R^2-AI^2}=4\)

\(\Rightarrow IM=OM-OI=R-OI=1\)

\(\Rightarrow AM=\sqrt{AI^2+IM^2}=\sqrt{10}\left(cm\right)\)

b.

Vẫn như trên, ta có: \(AI=\dfrac{1}{2}AB=6\)

Do MN là đường kính \(\Rightarrow\Delta MAN\) vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông MAN với đường cao AI:

\(\dfrac{1}{AI^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\Rightarrow\dfrac{1}{6^2}=\dfrac{1}{10^2}+\dfrac{1}{AM^2}\Rightarrow AM=\dfrac{15}{2}\)

Áp dụng hệ thức lượng:

\(AI.MN=AN.AM\Leftrightarrow MN=\dfrac{AM.AN}{AI}=\dfrac{25}{2}\)

\(\Rightarrow R=\dfrac{MN}{2}=\dfrac{25}{4}\left(cm\right)\)

NV
5 tháng 8 2021

undefined

Câu 11: A

Câu 12: B

7 tháng 12 2016

e dag can gap a

NV
7 tháng 8 2021

Do \(OH\perp AB\Rightarrow H\) là trung điểm AB

\(\Rightarrow AH=\dfrac{1}{2}AB=8\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(OA=\sqrt{AH^2+OH^2}=10\left(cm\right)\)

Vậy \(R=OA=10\left(cm\right)\)

11 tháng 1 2022

Tại sao R lại bằng OA vậy ạ

 

28 tháng 8 2019

Đáp án C

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì M là trung điểm của AB nên ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Theo quan hệ vuông góc giữa đường kính và dây ta có;

Mà khoảng cách từ O đến AM bằng 6 cm nên OM = 6 cm

Áp dụng định lí pytago vào tam giác OAM vuông ta có:

O A 2   =   O M 2   +   A M 2   =   6 2   +   8 2   =   100   n ê n   O A   =   10   c m

Suy ra: bán kính đường tròn đã cho là R = 10 cm.