K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

M =1/1.2+1/2.3+1/3.4+.......+1/2019.2020

=1-1/2+1/2-1/3+1/3-1/4+.......-1/2019+1/2019-1/2020

=1-1/2020

=2019/2020

6 tháng 9 2016

sorry , ko để ý,

 Ta có A =1.2 + 2.3 + 3.4 + ...+ 98.99 
B = 1^2 + 2^2 + 3^2 +...+98^2 = 1.1+2.2+3.3+...+98.98 
Suy ra: A-B= (1.2 + 2.3 + 3.4 + ...+ 98.99) - (1.1+2.2+3.3+...+98.98) 
= (1.2-1.1) + (2.3-2.2) + (3.4-3.3) +...+ (98.99-98.98) 
= 1(2-1) + 2(3-2) + 3(4-3) +...+ 98(99-98) 
= 1.1 + 2.1 + 3.1 +...+ 98.1 
= 1+ 2+ 3+...+ 98 = [98.(98+1)]/2= 98.99/2 = 4851 

6 tháng 9 2016

A = 1.2 + 2.3 + 3.4 + ... + 98.99

A x 3 =1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3

A x 3 = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2 )+...+98.99.(100-97)

A x 3 = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99

A x 3 = 98.99.100

=> A = 98.99.100:3

=> A = 323400

27 tháng 10 2015

câu hỏi tương tự không có

17 tháng 9 2015

Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101  3S = 3.33.100.101 
 S=33.100.101= 333300

6 tháng 8 2024

Đặt

S= 1.2 + 2.3 + 3.4 + ...+ 99.100  

3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3

3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)

3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100

3S = 99.100.101  3S = 3.33.100.101  

S=33.100.101= 333300

14 tháng 3 2016

S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012

S= 1/2 - 1/2012 = 1005/2012

14 tháng 3 2016

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)

\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)

\(S=\frac{1}{2}-\frac{1}{2012}\)

\(S=\frac{1005}{2012}\)

\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)

\(A=1005\)

20 tháng 7 2017

\(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3}{3}\)

\(=\frac{1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]}{3}\)

\(=\frac{1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)}{3}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}=\frac{n\left(n+1\right)\left(2n+4\right)}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{3n\left(n+1\right)}{6}\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2}\)

Vậy chọn C

11 tháng 12 2021

c c c c c cccccccc c c c cccc cccccc ccccccccc ccccccccccccccccccc cc 

24 tháng 8 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\) 

\(\Rightarrow a=\frac{2020}{2019}\)

24 tháng 8 2019

=.> 1-1/2+1/2-1/3+.......+1/2019-1/2020=1/x

=>1-1/2020=1/x

=>2019/2020=1/x

=>2019x=2020

=>x=2020/2019

    k nha

 giúp mk lên 300sp

14 tháng 6 2020

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

14 tháng 6 2020

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé

21 tháng 1 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S=1-\frac{1}{10}=\frac{9}{10}\)

3 tháng 5 2022

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)