Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Do : \(8^{111}< 9^{111}\left(8< 9\right)\)
\(\Rightarrow2^{333}< 3^{222}\)
a, Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
b, Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
\(\Rightarrow3^{2009}< 9^{1005}\)
c, Ta có : \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì 9>8 nên 9111>8111
Vậy 3222>2333
b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Vì 2010>2009 nên 32010>32009
Vậy 91005>32009
c)Ta có:\(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Vì 99<101 nên (99.99)10<(99.101)10
Vậy 9920<999910
a) \(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8< 9\)\(\Rightarrow8^{111}< 9^{111}\)\(\Rightarrow2^{333}< 3^{222}\)
b) \(9^{1005}=\left(3^2\right)^{1005}=3^{2.1005}=3^{2010}>3^{2009}\)
Ta có 200920= 20092x10=(20092)10= 403608110
Vì 4036081<20092009
Nên 403608110<2009200910
Vậy...
Rồi đó nha
~ủng hộ dùm~
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)
a)102009=10x10x....x10=(....0)
=>102009-1=(....9)\(⋮\)
tương tự các câu còn lại
các bn có thể giúp mình nhanh vs
chiều nay mình đi học rùi