Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 2y^2 - 2y - 2xy + 1 = (x^2 - 2xy + y^2) + (y^2 - 2y + 1) = (x - y)^2 + (y - 1)^2
\(x^2+2y^2-2y-2xy+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2\)
\(=\left(x-y\right)^2-\left(1-y\right)^2\)
\(=\left(x-y-1+y\right)\left(x-y+1-y\right)\)
\(=\left(x-1\right)\left(x-2y+1\right)\)
Gửi Thắng Nguyễn: Mình không biết tại sao lại ko phân tích được?
Ta để ý : x2 – 1 = (x – 1)(x + 1)
Do đó ta cần chia cả tử và mẫu của phân thức thứ nhất cho x – 1.
Mà ta có :
x5 – 1 = x5 – x4 + x4 – x3 + x3 – x2 + x2 – x + x – 1
= x4(x – 1) + x3(x – 1) + x2(x – 1) + x(x – 1) + (x – 1)
= (x – 1)(x4 + x3 + x2 + x + 1)
Do đó :
Vậy đa thức cần điền là x4 + x3 + x2 + x + 1.
Ta có:
Vậy đa thức cần điền vào chỗ trống là 2y(x+ y)
Chọn đáp án D
tính chất quan trọng phần thức với
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\Rightarrow c=\dfrac{ad}{b}\)áp vào
\(\dfrac{x^5-1}{x^2-1}=\dfrac{A}{x+1}\Rightarrow A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{x^2-1}\) {x khác +-1}
\(A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left[\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\right]\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\left(x^4+x^3+x^2+x+1\right)\)
Vậy đa thức cần điền là
\(A=\left(x^4+x^3+x^2+x+1\right)\)
\(a,=x\left(\frac{3}{7}x+6+xy\right)\)
\(b,=\left(x+3y\right)\left(3x-6xy\right)=\left(x+3y\right).3x\left(1-2y\right)\)
\(c,=x\left(x+y\right).\left(-5\right)\left(x+y\right)=\left(x+y\right)\left[x.\left(-5\right)\right]\)
\(d,=3\left(x-y\right)+5x\left(x-y\right)=\left(x-y\right)\left(3+5x\right)\)
\(B3.a,x\left(1+6x\right)=0\)
\(Th1:x=0\)
\(Th2:1+6x=0=>x=-\frac{1}{6}\)
Vậy \(x\in\left\{0;-\frac{1}{6}\right\}\)
\(b,\left(x+3\right)\left(2-x\right)=0\)
\(Th1:x+3=0=>x=-3\)
\(Th2:2-x=0=>x=2\)
Vậy \(x\in\left\{-3;2\right\}\)
\(c,5x\left(x-2\right)+\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x+1\right)=0\)
\(Th1:x-2=0=>x=2\)
\(5x +1=0=>x=-\frac{1}{5}\)
Vậy \(x\in\left\{-\frac{1}{5};2\right\}\)