Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
Nick này là của tôi đó
Ai nhanh mk k cho
3 k nhé bn
Nhanh lên các bn ới
Ai trả lopiwf đc tôi cho luôn nick này
Nhanh lên
Coi như là mừng tuổi
ok nhé
cho 3 k
\(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{10^2}\right)\)
=> \(\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\)\(...\left(1-\frac{1}{10}\right)\cdot\left(1+\frac{1}{10}\right)\)
=> \(\left(1-\frac{1}{2}\right)\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\cdot\cdot\frac{9}{10}\cdot\frac{10}{11}\)
=> \(\frac{1}{2}\cdot\frac{3\cdot2\cdot4\cdot\cdot\cdot9\cdot10}{2\cdot3\cdot3\cdot\cdot\cdot10\cdot11}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
Chúc bn học tốt !
cho mk 3 k nha bn
thanks nhìu
bài này mk ko copy, ko chép mạng, tự nghĩ mất 6 phút .
có công thức rùi nha !
chúc bn học tốt
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1/2^2 < 1/1*2
1/3^2 < 1/2*3
1/4^2 < 1/3*4
...
1/100^2 < 1/99*100
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
=> A < 1 - 1/100
=> A < 1
minh deo can ban k dau :((
\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)
\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)
\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)
\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)
\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)
Vậy x = 42/11
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)
\(\frac{4}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{7}{12}\)
\(\frac{-4}{9}\le x\le\frac{7}{18}\)
\(\frac{-8}{18}\le x\le\frac{7}{18}\)
\(\Rightarrow\)X \(\in\) {\(\frac{-7}{18};\frac{-6}{18};\frac{-5}{18};\frac{-4}{18};\frac{-3}{18};\frac{-2}{18};\frac{-1}{18};0;\frac{1}{18};\frac{2}{18};\frac{3}{18};\frac{4}{18};\frac{5}{18};\frac{6}{18}\)}
\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2015}\)
\(=1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2015}\)
\(=1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+............+\left(1-\frac{2014}{2015}\right)\)
\(=\left(1+1+1+..........+1\right)-\left(\frac{1}{2}+\frac{2}{3}+.........+\frac{2014}{2015}\right)\)
\(=2014-\frac{1}{2}-\frac{2}{3}-.........-\frac{2014}{2015}\)
Từ đây bạn làm tiếp