Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\sqrt{50}-3\sqrt{32}-\sqrt{162}+5\sqrt{98}\)
=\(2.5\sqrt{2}-3.4\sqrt{2}-9\sqrt{2}+5.7\sqrt{2}\)
= \(10\sqrt{2}-12\sqrt{2}-9\sqrt{2}+35\sqrt{2}\)
= \(24\sqrt{2}\)
b) \(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)
= \(\sqrt{7+2\sqrt{7}+1}+\sqrt{7-4\sqrt{7}+4}\)
= \(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-2\right)^2}\)
= \(\sqrt{7}+1+\sqrt{7}-2\)
= \(2\sqrt{7}-1\)
c) \(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
= \(2\sqrt{5}+6-2\sqrt{5}-3\)
= 3
\(\sqrt{8-4\sqrt{3}}-\sqrt{8+4\sqrt{3}}=\sqrt{5-4\sqrt{3}+3}-\sqrt{5+4\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\)
\(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{4-4\sqrt{3}+3}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{\left(2-\sqrt{3}\right)^2}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\left(2-\sqrt{3}\right)}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8}+20-10\sqrt{3}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}}+3}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{9-\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{9-\sqrt{25}}=\sqrt{9-5}=\sqrt{4}=2\)
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6
Cau 1:
a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)
c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)
TH1: c>0
\(C=\dfrac{c+1}{c-1}\)
TH2: c<0
\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)
\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}=6\sqrt{3}-12\sqrt{3}+20\sqrt{3}=14\sqrt{3}\)
câu tiếp tương tự câu thứ 2 nha
Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{2}\)
\(B=\sqrt{8-2\sqrt{5}-\sqrt{8+2\sqrt{5}}}\)
\(B=3,662841501-4,728708045\)
\(B=-1,653330227\)
làm bài hài vc !!!!