Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
\(=5-\sqrt{19}-\sqrt{19}+4\)
\(=9-2\sqrt{19}\)
b: Ta có: \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
\(=3-2\sqrt{2}-3+2\sqrt{2}\)
=0
c.
Căn bậc 2 không xác định do $2-\sqrt{5}< 0$
d.
\(=\sqrt{(3+\sqrt{3})^2}(3+\sqrt{3})=|3+\sqrt{3}|(3+\sqrt{3})=(3+\sqrt{3})^2=12+6\sqrt{3}\)
e.
\(=(2-\sqrt{5})\sqrt{(2+\sqrt{5})^2}=(2-\sqrt{5})|2+\sqrt{5}|=(2-\sqrt{5})(2+\sqrt{5})=4-5=-1\)
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
a)
\((4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)
\(=2(4^2-15)=2\)
b)
\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}=\sqrt{(8+2\sqrt{15})+2+2(\sqrt{6}+\sqrt{10})}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3}+\sqrt{2})^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
c)
\((\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}):(2\sqrt{\sqrt{5}-2})\)
\(=(\sqrt{(5+2\sqrt{9\sqrt{5}-19})(\sqrt{5}+2)}-\sqrt{(7-\sqrt{5})(\sqrt{5}+2)}):(2\sqrt{(\sqrt{5}-2)(\sqrt{5}+2)})\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{(9\sqrt{5}-19)(9+4\sqrt{5})}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{9+5\sqrt{5}}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(9+5\sqrt{5})+2\sqrt{9+5\sqrt{5}}+1}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(\sqrt{9+5\sqrt{5}}+1)^2}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{9+5\sqrt{5}}+1-\sqrt{9+5\sqrt{5}}]:2=\frac{1}{2}\)
d)
\((\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}})^2=18+2\sqrt{(9+\sqrt{5})(9-\sqrt{5})}=18+4\sqrt{19}\)
\(\Rightarrow \sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}=\sqrt{18+4\sqrt{19}}\)
Do đó:
\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}=\frac{\sqrt{18+4\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{2+1-2\sqrt{2.1}}\)
\(=\frac{\sqrt{2}.\sqrt{9+2\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{(\sqrt{2}-1)^2}=\sqrt{2}-(\sqrt{2}-1)=1\)
\(\sqrt{\left(2\sqrt{2-1}\right)^2}-\sqrt{17+12\sqrt{2}}\\ =\left|2\sqrt{2}-1\right|-\sqrt{9+2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\\ =2\sqrt{2}-1-\sqrt{\left(3+2\sqrt{2}\right)^2}\\=2\sqrt{2}-1-\left(3+2\sqrt{2}\right)\\ =2\sqrt{2}-1-3-2\sqrt{2}\\ =-4\)
__
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\\ =\left|2-\sqrt{5}\right|+\sqrt{9-2\cdot3\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\\ =2-\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}\\ =2-\sqrt{5}+3-\sqrt{5}\\ =5-2\sqrt{5}\)
__
\(\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{19+6\sqrt{2}}\\ =\left|4-3\sqrt{2}\right|-\sqrt{18+2\cdot3\cdot\sqrt{2}+1}\\ =4-3\sqrt{2}-\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =4-3\sqrt{2}-3\sqrt{2}-1\\ =3-6\sqrt{2}\)
\(a,=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=\sqrt{6}-1\\ b,=3-2\sqrt{2}+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\\ c,=\sqrt{\left(\sqrt{5}+2\right)^2}-\left(\sqrt{5}-1\right)=\sqrt{5}+2-\sqrt{5}+1=3\)
a) \(=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=-1+\sqrt{6}\)
b) \(=\left|3-2\sqrt{2}\right|+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\)
c) \(=\sqrt{\left(\sqrt{5}+2\right)^2}-\left|1-\sqrt{5}\right|=\sqrt{5}+2+1-\sqrt{5}=3\)
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6