\(\frac{\sqrt{13+2\sqrt{11}}+\sqrt{13-2\sqrt{11}}}{\sqrt{13+5\sqrt{5}}}-\sqrt{3-2\sqrt{2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

Gọi A= \(\sqrt{5-\sqrt{13+2\sqrt{11}}}\) - \(\sqrt{5+\sqrt{13+2\sqrt{11}}}\) 

Lấy A bình phương rồi áp dụng hằng đẳng thức số 2 sẽ ra:

A^2 = \(10-\) \(2\sqrt{25-\left(13+2\sqrt{11}\right)}\)

\(10-2\sqrt{11-2\sqrt{11}+1}\)

\(10-2\sqrt{\left(\sqrt{11}-1\right)^2}\)

\(12-2\sqrt{11}\)

=\(11-2\sqrt{11}+1\)

\(\left(\sqrt{11}-1\right)^2\)

Suy ra A= \(\sqrt{11}-1\)

14 tháng 4 2020

\(a=\sqrt{5-\sqrt{13+2\sqrt{11}}}\); \(b=\sqrt{5+\sqrt{13+2\sqrt{11}}}\)dễ thấy \(a< b\)

ta có \(a^2+b^2=10;a.b=\left(\sqrt{11}-1\right)^{ }\).

Từ đây ta có \(\left(a-b\right)^2=\left(\sqrt{11}-1\right)^2\)kết hợp với a<b => a-b=1-\(\sqrt{11}\)

14 tháng 4 2020

dấu = t2 từ dưới lên cho mk sửa + bổ xung

\(=10-2\sqrt{11}+2\left(\sqrt{11}-1>0\right)\\ =12-2\sqrt{11}\\ \Rightarrow A=\sqrt{11-2\sqrt{11}+1}=\sqrt{\left(\sqrt{11}-1\right)^2}\\ =\sqrt{11}-1\left(\sqrt{11}-1>0\right)\)

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???

2 tháng 8 2016

a) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(\sqrt{9\cdot11}-\sqrt{9\cdot2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=3\cdot11-3\sqrt{22}-11+3\sqrt{22}\)

\(=33-11=22\)

b)\(3\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)

\(=\frac{9}{\sqrt{8}}-\frac{7}{\sqrt{2}}+\frac{5}{\sqrt{18}}\)

\(=\frac{9}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)

\(=\frac{27-42+10}{6\sqrt{2}}\)

\(=-\frac{5}{6\sqrt{2}}\)

c)\(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(=\left(1-\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}+1\right)\)

\(=\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)

\(=1-5=-4\)