Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)
d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)
e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)
f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
\(\left(\dfrac{1}{3}x+2y\right).\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}x+2y\right).[\left(\dfrac{1}{3}x\right)^2-\dfrac{2}{3}xy+\left(2y\right)^2] \)
= \(\left(\dfrac{1}{3}x+2y\right)^3\)
a)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=x^3+3x^2+3x+1\)
b)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3+3.2x.3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
c)
\(x^3+3.x^2.\dfrac{1}{2}+3.x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=x^3+1,5x^2+0,75x+0,125\)
d)
=\(\left(x^2\right)^3-3.\left(x^2\right)^2.2+3.x^2.2^2-2^3\)
\(=x^5-6x^4+12x^2-8\)
e)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
\(a,=\left(5x-1\right)^2\\ b,=\left(x+4\right)^2\\ c,=\left(4x+3y\right)^2\\ d,=\left(\dfrac{x}{4}+2y\right)^2\)
\(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
\(\left(x+4\right)\left(x^2-4x+16\right)=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
\(\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)
\(=\left(5x+3y\right)\left[\left(5x\right)^2-5x.3y+\left(3y\right)^2\right]\)
\(=\left(5x\right)^3+\left(3y\right)^3=125x^3-27y^3\)
a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)