Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)
b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)
c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)
d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)
e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)
f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)
a, \(xy\left(x+y\right)-x^2\left(x+y\right)-y^2\left(x-y\right)\)
\(=x^2y+xy^2-x^3-x^2y-xy^2+y^3\)
\(=y^3-x^3\)
b, \(x^2-x^2\left(5x+1\right)+x\left(x-3\right)\)
\(=x^2-5x^3-x^2+x^2-3x\)
\(=-5x^3+x^2-3x\)
Chúc bạn học tốt!!!
c, \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2-5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=-10x^2-11x+24\)
d, \(\dfrac{1}{2}\left(x+4\right)+\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)\)
\(=\dfrac{1}{2}x+2+3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x\)
\(=-x^3+\left(3x^2-\dfrac{3}{2}x^2\right)+\left(\dfrac{1}{2}x-\dfrac{1}{2}x\right)+2\)
\(=-x^3+\dfrac{3}{2}x^2+2\)
\(=-\left(x^3-\dfrac{3}{2}x^2-2\right)=-\left(x^3-2x^2+\dfrac{1}{2}x^2-x+x-2\right)\)
\(=-\left[\left(x^3-2x^2\right)+\left(\dfrac{1}{2}x^2-x\right)+\left(x-2\right)\right]\)
\(=-\left[x^2.\left(x-2\right)+\dfrac{1}{2}x.\left(x-2\right)+\left(x-2\right)\right]\)
\(=-\left[\left(x-2\right).\left(x^2+\dfrac{1}{2}x+1\right)\right]\)
Chúc bạn học tốt!!!
$a)$ \(x^{12}:\left(-x\right)^6\)
\(=x^{12}:x^6\)
\(=x^{12-6}\)
\(=x^6\)
$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)
\(=\left(-x\right)^{7-5}\)
\(=\left(-x\right)^2\)
\(=x^2\)
$c)$ \(5x^2y^4:10x^2y\)
\(=\dfrac{1}{2}y^3\)
$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)
\(=\left(-xy\right)^{14-7}\)
\(=\left(-xy\right)^7\)
Các câu còn lại tương tự nha bạn!
a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)
\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)
\(\Leftrightarrow2x-x^2+3=3\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)
b)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Mà x,yEN*=>x-y-1<x+y+3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy ...
a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)
=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)
\(=3x^2y-2xy^2-5xy\)
b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)
=\(\dfrac{2y+5y}{x-2}\)
=\(\dfrac{7y}{x-2}\)
c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)
\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)
=\(\dfrac{x\left(y-3x\right)}{3x-y}\)
=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)
=-x
d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)
=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)
=\(\dfrac{1}{6}\)