Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(M\left(x\right)+N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)+\left(3x^4-5x^2-x-2,5\right)\)
\(=\left(x^4+3x^4\right)+5x^3-\left(x^2+5x^2\right)+\left(x-x\right)-\left(0,5+2,5\right)\)
\(=4x^4+5x^3-6x^2-3\)
b) \(M\left(x\right)-N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)-\left(3x^4-5x^2-x-2,5\right)\)
\(=x^4+5x^3-x^2+x-0,5-3x^4+5x^2+x+2,5\)
\(=\left(x^4-3x^4\right)+5x^3-\left(x^2-5x^2\right)+\left(x+x\right)-\left(0,5-2,5\right)\)
\(=-2x^4+5x^3+4x^2+2x+2\)

Bài 2 : Bài giải
a, \(2008^n=1=2008^0\)
\(\Rightarrow\text{ }n=0\)
b, \(32^{-n}\cdot16^n=1024\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n=2^{10}\)
\(2^{-5n}\cdot2^{4n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow\text{ }n=-10\)
c, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n=\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^6\cdot2^6=2^{12}\)
\(\Rightarrow\text{ }n=12\)

Ta có : M(x) + N(x) = ( x4+ 5x3- x2+ x- 0,5) + ( 3x4- 5x2- x- 2,5)
= x4+ 5x3- x2+ x- 0,5 + 3x4- 5x2- x- 2,5
= ( x4 +3x4 ) + 5x3 - ( x2 +5x2 ) + ( x-x ) - ( 0,5 +2,5 )
4x4 + 5x3 - 6x2 - 3

a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8

a) M(x)+N(x)=10x4-2x2-x+14
b) nghiệm M(x)-N(x)=10x2-3x=0<=> x=0 hoặc x=3/10
c) ta có:
-P(X)+M(X)=-N(x)
<=> P(x)=M(x)+N(x)=10X4-2x2-x+14 (theo kết quả câu a )
a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) = - 3.{x^{m + 2 - n - 2}} = - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).