Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5\(\dfrac{4}{27}\) + \(\dfrac{6}{23}\) + 0,25 - \(\dfrac{4}{27}\) + \(\dfrac{17}{23}\)
= 5 + (\(\dfrac{4}{27}\) - \(\dfrac{4}{27}\)) + (\(\dfrac{6}{23}\) + \(\dfrac{17}{23}\)) + 0,25
= 5 + 1 + 0,25
= 6,25
b, 16.(\(\dfrac{1}{2}\))3 - \(\dfrac{3}{5}\): 0,75
= 16.\(\dfrac{1}{8}\) - 0,8
= 2 - 0,8
= 1,2
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}:\left(4,5-2\right)-0,2\)
\(=\frac{4}{25}+\frac{11}{2}:\frac{5}{2}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{2}.\frac{2}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{55}{25}-\frac{5}{25}\)
\(=\frac{54}{25}\)
a) Đề sai
b) \(\left|x+\frac{4}{5}\right|=\frac{1}{7}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{5}=\frac{1}{7}\\x+\frac{4}{5}=\frac{-1}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{7}-\frac{4}{5}\\x=\frac{-1}{7}-\frac{4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{35}-\frac{28}{35}\\x=\frac{-5}{35}-\frac{28}{35}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-23}{35}\\x=\frac{-33}{35}\end{cases}}}\)
Vậy \(x=\frac{-23}{35}\)hoặc \(x=\frac{-33}{35}\)