Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{6}=\dfrac{-4x-2y+4z}{7}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=0\Leftrightarrow x=\dfrac{3y}{4}\\\dfrac{5y-4z}{6}=0\Leftrightarrow z=\dfrac{5y}{4}\end{matrix}\right.\)
Ta có \(x+y+z=36\)
\(\Leftrightarrow\dfrac{3y}{4}+y+\dfrac{5y}{4}=36\)
\(\Rightarrow y=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\z=15\end{matrix}\right.\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a: Ta có: 2x=5y
nên \(\dfrac{x}{5}=\dfrac{y}{2}\)
hay \(\dfrac{x}{5}=\dfrac{2y}{4}\)
mà x-2y=-12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{2y}{4}=\dfrac{x-2y}{5-4}=-12\)
Do đó: x=-60; y=-24
b: Ta có: 2x=3y=4z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)
mà x+y-z=21
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{21}{\dfrac{7}{12}}=36\)
Do đó: x=18; y=12; z=9
Ta có:
\(4x=5y\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{16}\left(1\right)\)
Ta lại có:
\(7x=4z\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{z}{7}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{z}{35}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{20}=\dfrac{y}{16}=\dfrac{z}{35}\)
\(=\dfrac{x}{20}=\dfrac{2y}{32}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{x}{20}=\dfrac{2y}{32}=\dfrac{z}{35}\)
\(=\dfrac{x+2y+z}{20+32+35}=\dfrac{80}{87}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{80}{87}\\\dfrac{y}{16}=\dfrac{80}{87}\\\dfrac{z}{35}=\dfrac{80}{87}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{87}.20\\y=\dfrac{80}{87}.16\\z=\dfrac{80}{87}.35\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1600}{87}\\y=\dfrac{1280}{87}\\z=\dfrac{2800}{87}\end{matrix}\right.\)