K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

2S= 2.(2+2^2+2^3+.....+2^99+2^100+2^101

=2^2+2^3+...+2^102

2s-s=(2^2+2^3+2^4+...+2^102)- (2+2^2+2^3+...+2^101)

s=2^2+2^3+2^4+...+2^102-2-2^2-2^3-...-2^101

  =2^102-2

  =2.(2^101-1)

vì .........

vậy ..........

tự bạn làm tiếp nhé

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

6 tháng 1 2016

S = 1 x 2 + 2 x 3 + ... + 99 x 100

3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100

3S = 99 x 100 x 101 = 999900

S = 999900 : 3 = 333300

6 tháng 1 2016

3S=1*2*3+2*3*(4-1)+3*4*(5-2)+.......+99*100*(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+..........+99*100*101-98*99*100

S=99*100*11:3

S=333300

7 tháng 1 2016

Số số hạng :

(100-1):1+1=100(số hạng)

Tổng bằng:

(100+1)x(100:2)=5050

Bài này đâu phải tổng đâu bạn 

18 tháng 3 2017

\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3S=1.2.3.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3S=99.100.101\)

\(S=\frac{99.100.101}{3}\)

\(S=33.100.101\)

18 tháng 3 2017

S = 1*2+2*3+3*4+...+99*100

3S=1*2(3-0)+2*3(4-1)+3*4(5-2)+...+99*100(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+99*100*101-98*99*100

3S=99*100*101

S=(99*100*101):3

S=333 300

10 tháng 3 2017

-1+-1+-1+.......+-1(50 cs -1)

bn tính đi

10 tháng 3 2017

\(S=1^2+2^2+3^2+...+99^2+100^2-\left(2^2+4^2+6^2+...+100^2\right)\)( thêm vào vế đầu các thừa số có cơ số chẵn, bớt đi 1 lần thế nữa là 2 lần)
Đặt vế sau là S2 nhá, \(S_2=4\left(1^2+2^2+3^2+...+50^2\right)\)

mình không tính cụ thể, bạn tự tính dùng công thức như sau: ví dụ tính 1^2 ----> 50^2 rồi thì bạn tự tính từ 1^2 ------> 100^2 nhá

\(1^2+2^2+3^2+...+50^2\)

\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+50\left(51-1\right)\)

\(=1.2+2.3+3.4+...+50.51+\left(1+2+3+...+50\right)\)
vế sau bạn tự tính, bh đi tính vế đầu

\(A=1.2+2.3+3.4+...+50.51\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+50.51\left(52-49\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+50.51.52-49.50.51\)

\(=50.51.52\)

\(\Rightarrow A=50.17.52\)
bạn cứ nhớ cái dãy 1.2+2.3+3.4+...+n(n+1) thì kết quả là n(n+1)(n+2)/3 nhé, bây giờ tính nốt đi, mệt quá... bài dài v~