Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
Ta thấy \(1009020⋮4\)nên đặt \(1009020=4k\left(k\in N\right)\)
Khi đó: \(A-8=3^{4k}-8\)
\(=\left(3^4\right)^k-8\)
\(=81^k-8=...1-8=...3\)
Số có chữ số tận cùng là 3 không thể là số chính phương nên A - 8 không là số cjính phương
Không vì S = \(\frac{3^{30}-1}{2}\) không phải bình phương của 1 số
số các số hạng của a là:
[(2n-1)-1]:2+1=n(số)
=>A là:(2n-1+1)n:2==2n.n:2=n.n=n2
=>A là số chính phương
=>đpcm
Số số hạng là :
[(2n - 1) - 1] : 2 = (2n - 2) : 2 = n - 1 (số hạng)
Tổng A là :
[(2n - 1) + 1] . (n - 1) : 2 = 2n . (n - 1) : 2 = n . (n - 1) = n2 - n
Do đó A không phải là số chính phương.
\(A=1+2+2^2+2^3+...+2^{33}\\ \Rightarrow2A=2+2^2+2^3+2^4+...+2^{34}\\ \Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{34}\right)-\left(1+2+2^2+2^3+...+2^{33}\right)\\ \Rightarrow A=2^{34}-1\)
Ta có: \(2^{34}=2^{17.2}=\left(2^{17}\right)^2\) là số chính phương
Do đó: \(A=2^{34}-1\) không phải là số chính phương
Vậy...