K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=2^2+4^2+...+200^2\)

\(=2^2\left(1^2+2^2+...+100^2\right)\)

\(=4\cdot\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)

\(=\dfrac{4}{6}\cdot100\cdot101\cdot201=1353400\)

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

5 tháng 8 2023

2² + 4² + 6² + ... + 16² + 18²

= 4.(1 + 2² + 3² + ... + 8² + 9²)

= 4.285

= 1140

5 tháng 8 2023

= 285 nha mình ghi nhầm thành 385

 

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:

Gọi vế trái là $A$

$2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+...+\frac{2}{2022^2}$

Xét số hạng tổng quát:

$\frac{2}{n^2}$. Ta sẽ cm $\frac{2}{n^2}< \frac{1}{(n-1)n}+\frac{1}{n(n+1)}(*)$

$\Leftrightarrow \frac{2}{n^2}< \frac{n+1+n-1}{n(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{n^2-1}$ (luôn đúng)

Thay $n=2,4,...., 2022$ vào $(*)$ ta có:

$\frac{2}{2^2}< \frac{1}{1.2}+\frac{1}{2.3}$

$\frac{2}{4^2}< \frac{1}{3.4}+\frac{1}{4.5}$

.......

Suy ra: $2A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$

$2A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$

$2A< 1-\frac{1}{2023}< 1$

$\Rightarrow A< \frac{1}{2}$

Chọn B

11 tháng 10 2017

Một cách giải khác:

Ta thấy \(b=22^2+24^2+42^2+44^2+62^2+64^2\)

\(=\left(2.11\right)^2+\left(2.12\right)^2+\left(2.21\right)^2+\left(2.22\right)^2+\left(2.31\right)^2+\left(2.32\right)^2\)

\(=4.11^2+4.12^2+4.21^2+4.22^2+4.31^2+4.32^1\)

\(=4\left(11^2+12^2+...+31^2+32^1\right)=4a\)

Vậy \(\frac{a}{b}=\frac{a}{4a}=\frac{1}{4}\)

Vậy \(\frac{a}{b}\) không là số tự nhiên.

11 tháng 10 2017

a có 6 số hạng, b cũng có 6 số hạng, mỗi số hạng của a nhỏ hơn các số hạng của b. Suy ra:

\(0< \frac{a}{b}< 1\).

Vậy \(\frac{a}{b}\) không là số tự nhiên.

26 tháng 1 2018

Ta có 12 + 22 + 32 + …102 = 385

Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32

Do đó ta tính được A = 32 + 62 + 92 + …+302  = 3465

14 tháng 9 2019

Bài làm lâu quá, chọn mk đúng nhé !!!


a)    Có     (139139 . 133 - 133133 . 139) : (2 + 4 + 6 + ... + 2002)
       =(139*1001*133 - 133*1001*139) : (2 + 4 + 6 + ... + 2002)
       =                          0                   : (2 + 4 + 6 + ... + 2002)
       =                                        0
b)   Năm 2002 và năm 2012 cách nhau 10, trong đó có 3 năm nhuận, suy ra 2 năm này cách nhau 365 * 10 + 1 + 1 + 1 = 3653 (ngày)
Mà 3653 chia 7 dư 6 nên ngày đó là thứ 7

c) Gọi STN đó là x
Theo đề bài, ta có: x = 18k + 12
                               = (3*6)k + 2*6
                              =  3k*6 + 2*6
                              = 6*(3k + 2)
Vì 6 chia hết cho 6 nên 6*(3k+2) chia hết cho 6, hay x chia hết cho 6
mà theo đề bài x chia 6 dư 2 (Có mâu thuẫn)
Suy ra, ko tồn tại x

31 tháng 7 2023

S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002

S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002

S=1+0+0...+0+2002

S= 1+2002

S=2003

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$

$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$

$=(-4).500+2001+2002=2003$