Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
c, |2\(x\) + 1| + |3\(x\) - 1| = 0
vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0
⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0
⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\)
Vậy \(x\) \(\in\) \(\varnothing\)
a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|
4.|3\(x\) -1| - 2.|3\(x\) - 1| = 1,5
Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)
Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5
12\(x\) - 4 - 6\(x\) + 2 = 1,5
6\(x\) - 2 = 1,5
6\(x\) = 1,5 + 2
6\(x\) = 3,5
\(x\) = 3,5: 6
\(x\) = \(\dfrac{7}{12}\)
Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)
Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5
-12\(x\) + 4 + 6\(x\) - 2 = 1,5
-6\(x\) + 2 = 1,5
6\(x\) = 2- 1,5
6\(x\) = 0,5
\(x\) = 0,5 : 6
\(x\) = \(\dfrac{1}{12}\)
Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\); \(\dfrac{7}{12}\)}
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
\(x\) | \(\dfrac{5}{2}\) 2024 |
\(x\) - 2024 | - - 0 + |
- 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
\(x\) | -5 2 |
\(x-2\) | - - 0 + |
\(x+5\) | - 0 + 0 + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
A = 22 - 20\(x\) + 2024
A = 4 + 2024 - 20\(x\)
A = 2028 - 20\(x\)
Ta có đồ thị
Không có giá trị nhỏ nhất em nhá
\(B=\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2024}\)
=>\(\left(-2\right)\cdot B=\left(-2\right)^2+\left(-2\right)^3+...+\left(-2\right)^{2025}\)
=>\(-2B-B=\left(-2\right)^2+\left(-2\right)^3+...+\left(-2\right)^{2025}-\left(-2\right)-\left(-2\right)^2-...-\left(-2\right)^{2024}\)
=>\(-3B=-2^{2025}+2\)
=>\(B=\dfrac{-2^{2025}+2}{-3}=\dfrac{2^{2025}-2}{3}\)