K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 11 2021

\(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3C=1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3C-C=\left(1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2C=1-\frac{1}{3^7}\)

\(C=\frac{1093}{2187}\)

DD
22 tháng 11 2021

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{39-37}{37.38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{38.39}\right)=\frac{185}{741}\)

9 tháng 10 2016

21320

21 tháng 3 2017

Em nói thật em mới học lớp 6 Màu em đã phải làm bài này rồi thật đấu không phải đùa đâu

1 tháng 7 2015

 

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{185}{741}\)

 

 

26 tháng 7 2019

Đặt    \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(2A=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)

\(A=\frac{185}{741}\)

Chúc bn hc tốt <3

1 tháng 7 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{38.39}\right)=\frac{185}{741}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}\left(\frac{741}{1482}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{185}{741}\).

13 tháng 11 2017

1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39

= 1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/37.38-1/38.39)

= 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39)

= 1/2.(1/1.2-1/38.39)

= 1/2.370/741

= 185/741

10 tháng 12 2015

Dựa vào công thức:

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\) ta có:

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{37.38}+\frac{1}{37.38}-\frac{1}{38.39}\)

\(S\times2=\frac{1}{1.2}-\frac{1}{38.39}\) 

S = \(\left(\frac{1}{2}-\frac{1}{1482}\right):2\) tự tính vì đây không có máy tính 

10 tháng 12 2015

sory,em mới học lp 6 thui

2 tháng 8 2015

5,Ta có

A=1/2+1/2^2+1/2^3+...+1/2^100

2A=1+1/2+1/2^2+1^2/3+...+1/2^99

2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)

A=1-1/2^100

 

 

7 tháng 10 2024

a; A  =1 + 2 +3+ 4+ 5+ ... +n

Xét dãy số 1; 2; 3; 4;5;...;n

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)

Tổng của dãy số trên là: (n + 1).n x 2 

A = (n + 1).n:2

 

 

 

7 tháng 10 2024

B = 1 + 3 + 5+ 7+ ...+ (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

     3 - 1 = 2

Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n

Tổng của dãy số trên là:    (2n - 1 + 1) x n : 2 = n2

Vậy B = n2

 

   

a)

*\(1+2+3+...+\left(n-1\right)+n\)

Số số hạng là:

\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

*\(1+3+5+...+\left(2n-1\right)\)

Số số hạng của dãy số là: 

\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)

18 tháng 8 2015

a)  A =(2n-1+1).(2n-1)/2=2n.(2n-1)/2=n(2n-1)

b)  B= 1.2+2.3+3.4+...+n(n+1)

3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)-(n-1)]

3B=1.2.3-1.2.3+2.3.4-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3B=n(n+1)(n+2)

B=n(n+1)(n+2)/3

 

4C=1.2.3.4+2.3.4.(5-1)+3.4.5(6-2)+...+n(n+1)(n+2).[(n+3)-(n-1)]

4C=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)

4C=n(n+1)(n+2)(n+3)

C=n(n+1)(n+2)(n+3)/4

15 tháng 7 2016

Câu b1 nếu mà là (n-1) thì sao

25 tháng 7 2016

Câu a)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-2\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-\left(2^{100}+2^{98}+2^{96}+...+2^4+2^2\right)\)
\(=2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(=\frac{2^2\cdot\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{\left(2^{101}+2^{99}+2^{97}+...+2^5+2^3\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{2^{101}-2}{3}\)

6 tháng 4 2017

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2015.2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{2.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2016.2017}\)

\(B=\frac{\frac{1}{1.2}-\frac{1}{2016.1017}}{2}\)