Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a^2+a+1=0\Rightarrow a\ne1\)\(\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\)
Ta có \(a^{2011}+\frac{1}{2011}=a.a^{2010}+\frac{1}{a.a^{2010}}=a.\left(a^3\right)^{670}+\frac{1}{a.\left(a^3\right)^{670}}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)
Trong trường hợp này a không còn là số thực nữa mà a trong trường số phức .
a2 + a + 1 = a2 + 2.a.0,5+ (0,5)2 + 0,75 = (a + 0,5)2 + 0,75 = 0
=> (a + 0,5)2 = -0,75 mà\(\left(a+0,5\right)^2\ge0\Rightarrow\)Ko có x thỏa mãn nên ko tính được tổng a2011 + 1/a2011
Ct tổng quát:n.n!=(n+1-1)n!=(n+1)n!-1.n!=(n+1)!-n!.Sau đó thay vào >>>A=19!-1
C = -1 ; D = 12 ; A = - 4 ; B = - 3
A+ B +C +D = 12 - 1 - 3 - 4 = 8
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
\(S=x^2+y^2;\)\(\frac{x^3+y^3}{x+y}=T\)
\(\Rightarrow\left(x^2+y^2\right)-\frac{x^3+y^3}{x+y}=28\)
\(\Leftrightarrow x^2+y^2-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}=28\)
\(\Leftrightarrow xy=28\)
Vì x,y nguyên và x<y nên ta xét từng trường hợp:
- \(\hept{\begin{cases}x=-28\\y=-1\end{cases}}\)
- \(\hept{\begin{cases}x=-14\\y=-2\end{cases}}\)
- \(\hept{\begin{cases}x=-7\\y=-4\end{cases}}\)
- \(\hept{\begin{cases}x=1\\y=28\end{cases}}\)
- \(\hept{\begin{cases}x=2\\y=14\end{cases}}\)
- \(\hept{\begin{cases}x=4\\y=7\end{cases}}\)
Ta được \(\left(x;y\right)=\left(-28;-1\right);\left(-14;-2\right);\left(-7;-4\right);\left(1;28\right);\left(2;14\right);\left(4;7\right)\)