Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ : \(\frac{X}{Y}\)=A
=> X=YA
THAY VÀO PHÂN SỐ,CÓ ĐPCM
Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=> 1 / x+ y = x + y / xy <=>(x+ y )^2 = xy (1) ( nhân chéo hai vế)
Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y => (x+y)^2 >xy trái với (1)
Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x.y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{x.y}\Rightarrow x.y=\left(x+y\right)^2\)
khong thoa man vi x.y la so am con (x+y)^2 la so duong
\(\frac{x}{2}=\frac{y}{4}\) và \(x+y=28\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{x+y}{2+4}=\frac{28}{6}=\frac{14}{3}\)
\(\Rightarrow x=\frac{14}{3}.2=\frac{28}{3}\)
\(y=\frac{14}{3}.4=\frac{56}{3}\)
Vậy: \(x=\frac{28}{3}\) và \(y=\frac{56}{3}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Theo giả thiết \(\frac{x}{y}=a,x\ne y\).
Thế x = ay ta có : \(\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left[a+1\right]}{y\left[a-1\right]}=\frac{a+1}{a-1}\)
Vậy \(\frac{x+y}{x-y}=\frac{a+1}{a-1}\)
thank you