Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
P = \(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{x-2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Với \(x=6-2\sqrt{5}=5-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)
=> P = \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+1}{\sqrt{\left(\sqrt{5}-1\right)^2}-3}=\frac{\sqrt{5}-1+1}{\sqrt{5}-1-3}=\frac{\sqrt{5}}{\sqrt{5}-4}=\frac{\sqrt{5}\left(\sqrt{5}+4\right)}{\left(\sqrt{5}-4\right)\left(\sqrt{5}+4\right)}=\frac{5+4\sqrt{5}}{-11}\)
a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)
\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)
Đặt \(\sqrt{x}=a\left(a>=0\right)\)
Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)
\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)
\(=12+16\left(12+5\sqrt{3}\right)\)
\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)
\(\Leftrightarrow x=a^2\simeq5,66\)
c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)
\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)
\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)
d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)
\(\Leftrightarrow3x-4001=0\)
hay x=4001/3
......................?
mik ko biết
mong bn thông cảm
nha ................
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(a.\)\(\frac{13x-16}{15}+\frac{x-32}{35}< \frac{x-6}{21}\)\(MC:105\)
\(\Leftrightarrow\frac{7\left(13x-16\right)}{105}+\frac{3\left(x-2\right)}{105}< \frac{5\left(x-6\right)}{105}\)
\(\text{Khử mẫu ta dc pt tương đương vs pt:}\)
\(\Leftrightarrow7\left(13x-16\right)+3\left(x-2\right)< 5\left(x-6\right)\)
\(\Leftrightarrow91x-112+3x-6< 5x-30\)
\(\Leftrightarrow94x-118< 5x-30\)
\(\Leftrightarrow94x-5x< 118-30\)
\(\Leftrightarrow89x< 88\)
\(\Leftrightarrow x< \frac{88}{89}\)
.\(b.\)\(\frac{5x+12}{14}+\frac{11x+28}{3}>\frac{4x+9}{17}\)\(MC:714\)
\(\text{Khi khử mẫu pt ta dc pt tương đương}:\):
\(\Leftrightarrow51\left(5x+12\right)+238\left(11x+28\right)>42\left(4x+9\right)\)
\(\Leftrightarrow255x+612+2618x+6664>168x+378\)
\(\Leftrightarrow2873x+7276>168x+378\)
\(\Leftrightarrow2873x-168x>-7276+378\)
\(\Leftrightarrow2705x>-6898\)
\(\Leftrightarrow x>-\frac{6898}{2705}\)
Ta trừ hai vế cho 1
=>Căn(3)-2 và 0
Căn(3)-2=Căn(3)-Căn(4) Mà 3<4 nên Căn(3)<Căn(4) nên Căn(3)-Căn(4)<0
Ta có : \(3< 4\Rightarrow\sqrt{3}< \sqrt{4}\Rightarrow\sqrt{3}-1< \sqrt{4}-1\Rightarrow\sqrt{3}-1< 2-1\Rightarrow\sqrt{3}-1< 1.\)
\(\sqrt{\frac{6^5}{2^3.3^5}}=\sqrt{\frac{6^5}{2^3.3^3.3^2}=}\sqrt{\frac{6^5}{6^3.3^2}}=\sqrt{\frac{6^2}{3^2}}=\sqrt{\left(\frac{6}{3}\right)^2}=\frac{6}{3}=2\)
=\(\sqrt{\frac{\left(2.3\right)^5}{2^3.3^5}}\)= \(\sqrt{\frac{2^5.3^5}{2^3.3^5}}\)= 2