Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
a) Áp dụng hằng đẳng thức số 3 bạn nhé
b) (2x + 3)(4x^2 - 6x +9) = 8x^3 + 9
Thay x= 120:2 = 60 vào biểu thức.
8* 60^3 + 9 = 1728009
c) = (2x + 1)^3
Thay x= -0,5 vào biểu thức
[2*(-0,5)+1]^3 = 0
d) = x^2 - 49 - x^2 - 2x - 1 = -50 - 2x
Thay x=49 vào biểu thức.
-50 - 2* 49 = -148
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
a) \(\frac{1+\frac{1}{x}}{x-\frac{1}{x}}=\frac{x+1}{x}\div\frac{x^2-1}{x}=\frac{x+1}{x}\cdot\frac{x}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x-1}\)
b) \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right)\div\left(\frac{1}{x+2}+\frac{1}{x-2}\right)=\frac{\left(x-2\right)^2-\left(x+2^2\right)}{\left(x^2-4\right)^2}\div\frac{x-2+x+2}{x^2-4}\)
\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x^2-4\right)^2}\cdot\frac{x^2-4}{2x}=\frac{2x\cdot\left(-4\right)}{x^2-4}\cdot\frac{1}{2x}=\frac{-4}{x^2-4}\)
a) \(\frac{1+\frac{1}{x}}{x-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x^2-1}{x}}=\frac{x+1}{x}\cdot\frac{x}{x^2-1}=\frac{1}{x-1}\)
b) \(\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2^2\right)}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)
\(\Leftrightarrow\left(\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)
\(\Leftrightarrow\left(\frac{x^2-4x+4-x^2-4x-4}{\left[\left(x-2\right)\left(x+2\right)\right]^2}\right):\left(\frac{x-2+x+2}{x^2-4}\right)\)
\(\Leftrightarrow\frac{-8x}{\left(x^2-4\right)^2}\cdot\frac{x^2-4}{2x}\)\(\Leftrightarrow-\frac{4}{x^2-4}\)
d) \(\frac{3x}{x^3-1}+\frac{x-1}{x^2+x+1}\Leftrightarrow\frac{3x}{x^3-1}+\frac{\left(x-1\right)^2}{x^3-1}\)
\(\Leftrightarrow\frac{x^2-2x+1+3x}{x^3-1}=\frac{x^2+x+1}{x^3-1}=\frac{1}{x-1}\)
còn lại chút giải tiếp !!!
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
\(a.\)\(\frac{13x-16}{15}+\frac{x-32}{35}< \frac{x-6}{21}\)\(MC:105\)
\(\Leftrightarrow\frac{7\left(13x-16\right)}{105}+\frac{3\left(x-2\right)}{105}< \frac{5\left(x-6\right)}{105}\)
\(\text{Khử mẫu ta dc pt tương đương vs pt:}\)
\(\Leftrightarrow7\left(13x-16\right)+3\left(x-2\right)< 5\left(x-6\right)\)
\(\Leftrightarrow91x-112+3x-6< 5x-30\)
\(\Leftrightarrow94x-118< 5x-30\)
\(\Leftrightarrow94x-5x< 118-30\)
\(\Leftrightarrow89x< 88\)
\(\Leftrightarrow x< \frac{88}{89}\)
.\(b.\)\(\frac{5x+12}{14}+\frac{11x+28}{3}>\frac{4x+9}{17}\)\(MC:714\)
\(\text{Khi khử mẫu pt ta dc pt tương đương}:\):
\(\Leftrightarrow51\left(5x+12\right)+238\left(11x+28\right)>42\left(4x+9\right)\)
\(\Leftrightarrow255x+612+2618x+6664>168x+378\)
\(\Leftrightarrow2873x+7276>168x+378\)
\(\Leftrightarrow2873x-168x>-7276+378\)
\(\Leftrightarrow2705x>-6898\)
\(\Leftrightarrow x>-\frac{6898}{2705}\)