Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+3^2+3^3+..........+3^99+3^100
3A=3^2+3^3+...............+3^100+3^101
=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)
=> 2A= 3^101 - 3
=>2A+3=3^101
=>3^n=3^101
=> n=101
chán không muốn dùng x2 nữa ^.^ !
Bài 1
1+2+3+...+199
=(1+199)+(2+198)+(3+197)+...+(99+101)+100
=200+200+200+...+200+100
=200.50+100
=10100
a/ 1 + 2 + 3 + 4 +...+n = 231
=> 231 x 2 = n (n+1)
462 = n x (n+1) = 21 x 22
=> n = 21
Tương tự
mk cũng đang cần bài này các bn giúp mk và Trịnh Lan Phương với nha
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
\(A=1+2+...+n=\frac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2a.111=6a.37\)
\(6a.37\)là tích của hai số tự nhiên liên tiếp và \(a\)là số tự nhiên có một chữ số suy ra \(\orbr{\begin{cases}6a=36\\6a=38\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=6\left(tm\right)\\a=\frac{19}{3}\left(l\right)\end{cases}}\).
Với \(a=6\Rightarrow n=36\).