Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số số hạng của A là:
(2n+1-1):2+1=n+1(số)
Số số hạng của B là;
(2n-2):2+1=n(số)
b: A=(2n+1+1)(n+1)/2=(n+1)^2 là số chính phương
c: C=(2n+2)*n/2=n(n+1) chỉ có thể là số chính phương khi n=0 thôi
\(A=1+2+...+n=\frac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2a.111=6a.37\)
\(6a.37\)là tích của hai số tự nhiên liên tiếp và \(a\)là số tự nhiên có một chữ số suy ra \(\orbr{\begin{cases}6a=36\\6a=38\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=6\left(tm\right)\\a=\frac{19}{3}\left(l\right)\end{cases}}\).
Với \(a=6\Rightarrow n=36\).
tìm số tự nhiên n biết tổng A=1+2+3+4+...+n là một số tự nhiên có 3 chữ số .các chữ số giống nhau ??
Giả sử tổng \(A=\overline{aaa}\) ta có
\(\overline{aaa}=\frac{n\left(1+n\right)}{2}\Rightarrow2.\overline{aaa}=n\left(n+1\right)\)
\(\Rightarrow2.\overline{aaa}=2.a.111=2.a.3.37=6.a.37=n\left(n+1\right)\) (*)
n và (n+1) là 2 số tự nhiên liên tiếp \(\Rightarrow6.a=\orbr{\begin{cases}36\Rightarrow a=6\\38\Rightarrow a=\frac{38}{6}\left(loai\right)\end{cases}}\)
Thay a=6 vào (*)\(\Rightarrow6.a.37=6.6.37=36.37=n\left(n+1\right)\Rightarrow n=36\)
a) Xét 3 t/h của x :
+) Xét n là số lẻ => ( 5n + 7 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n là số chẵn => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n bằng 0 => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
Vậy ta có đpcm
b) C.m tương tự câu a :
+) Với n lẻ thì ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n chẵn thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n = 0 thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
Vậy ta có đpcm
P.s : chỉ cần mỗi t/h đầu là có thể đpcm rồi, nhưng để đầy đủ thì cứ làm cả ra nha