\(\frac{3}{2}\)+\(\frac{3}{2^2}\)+..+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

S = \(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(2+1+\frac{1}{2}+....+\frac{1}{2^8}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(A=2-\frac{1}{2^9}\)

\(\Rightarrow S=3\left(2-\frac{1}{2^9}\right)=\frac{3.\left(2^{10}-1\right)}{2^9}\)

22 tháng 1 2017

= 1.2.3.....99/2.3.4....100

=1/100

k mk nha đáp án đúng đó

22 tháng 1 2017

Mik tính được 1/100

23 tháng 3 2017

A=\(\frac{3.3}{8.11}\)+\(\frac{3.3}{11.14}\)+\(\frac{3.3}{14.17}\)+........+\(\frac{3.3}{197.200}\)

A=3\(\frac{3}{8.11}\)+3\(\frac{3}{11.14}\)+3\(\frac{3}{14.17}\)+............+3\(\frac{3}{197.200}\)

A=3.(\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+..............+\(\frac{3}{197.200}\))

A=3.(\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+.........+\(\frac{1}{197}\)-\(\frac{1}{200}\))

A=3.(\(\frac{1}{8}\)-\(\frac{1}{200}\))

A=3.(\(\frac{50}{400}\)-\(\frac{2}{200}\))

A=3.\(\frac{48}{400}\)

A=3.\(\frac{3}{25}\)

A=\(\frac{9}{25}\)

6 tháng 3 2017

Phần a làm như sau :

x/2=1/3+1/5

x/2=8/15

x*15/30=16/30

x*15=16

x=16:15

x=16/15

Phần b làm như sau:

x=31/30

Còn phần c như sau:

x/3=16/63

x*21/63=16/63

x*21=16

x=16/21

Phần d như sau:

x/7=11/24

x*21/168=77/168

x*21=77

x=77/21

x=11/3

6 tháng 3 2017

b) x= \(\frac{31}{30}\) 

11 tháng 3 2017

Thực hiện phép tính 

a ) \(\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)

\(\frac{2}{5}+\frac{-1}{6}+\frac{-3}{4}+\frac{2}{3}\)

\(\left(\frac{2}{5}+\frac{-3}{4}\right)+\left(\frac{-1}{6}+\frac{2}{3}\right)\)

\(\left(\frac{8}{20}+\frac{-15}{20}\right)+\left(\frac{-1}{6}+\frac{4}{6}\right)\)

\(\left(\frac{8+\left(-15\right)}{20}\right)+\left(\frac{\left(-1\right)+4}{6}\right)\)

\(\frac{-7}{20}+\frac{1}{2}\)

\(\frac{-7}{20}+\frac{10}{20}=\frac{\left(7\right)+10}{20}=\frac{3}{20}\)

tk mk nha 

đang âm rất  nhiều rồi  , giúp nha !!!!!

2 tháng 1 2017

nhanh

15 tháng 4 2018

b,\(-\frac{5}{7}.\frac{4}{13}+-\frac{5}{7}.\frac{9}{13}+-\frac{2}{7}\)

\(=-\frac{5}{7}.\left(\frac{4}{13}+\frac{9}{13}\right)+-\frac{2}{7}\)

\(=-\frac{5}{7}+-\frac{2}{7}=-1\)

học tốt nha e!

15 tháng 4 2018

a, \(\frac{2}{3}+\left(\frac{3}{11}+-\frac{2}{5}\right)+-\frac{2}{5}\)

\(=\frac{2}{3}+(-\frac{22}{55}+-\frac{2}{5})\)

\(=\frac{2}{3}+-\frac{44}{115}=....??\)

24 tháng 4 2019

\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)

\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)

\(A=3\left(1-\frac{1}{58}\right)\)

\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)

21 tháng 4 2017

\(=\frac{3}{200}:\frac{3}{5}+\frac{3}{2}\left(\frac{4}{25}-\frac{2}{5}\right)-\frac{1}{25}.\left(\frac{7}{4}:\frac{7}{5}-\frac{5}{2}\right)\)

\(=\frac{3.5}{200.3}+\frac{3}{2}\left(\frac{4}{25}-\frac{2.5}{25}\right)-\frac{1}{25}\left(\frac{7.5}{4.7}-\frac{5}{2}\right)\)

\(=\frac{1}{40}+\frac{3}{2}\left(\frac{-6}{25}\right)-\frac{1}{25}\left(\frac{5}{4}-\frac{10}{4}\right)\)

\(=\frac{1}{40}-\frac{9}{25}+\frac{1}{20}\)

\(=\frac{1.5}{40.5}-\frac{9.8}{25.8}+\frac{1.10}{20.10}\)

\(=\frac{5-72+10}{200}=\frac{-57}{200}\)

21 tháng 4 2017

Thử máy tính lại ròi kq đúng

2 tháng 5 2019

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

2 tháng 5 2019

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B