Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
=> \(A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}=\frac{3}{4}\)
Vậy A<3/4
A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2018.2019}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
=\(1-\frac{1}{2019}=\frac{2019-1}{2019}=\frac{2018}{2019}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)=2.\frac{20}{21}=\frac{40}{21}\)
mình viết tắt bạn tự hiểu nha:
a=1+(59/1+5+525+...+58
b=1+(39/1+3+33+....+38
VD:A/B-C/D=A.C/B.D-C.B/D.B
TƯƠNG TỰ NHƯ A,B BẠN TÍNH RA
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
S= - 32\(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{868}\right)\)
S = - 32\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{28.31}\right)\)
S = - 3\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{28.31}\right)\)
S = -3\(\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{28}-\frac{1}{31}\right)\)
S = -3 \(\left(1-\frac{1}{31}\right)\)
S = -3\(.\frac{30}{31}\)
S = -90/31
1/3S=-(1/1*4+1/4*7+1/7*10+...+1/28*31)=-(1/1-1/4+1/4-1/7+1/7-1/10+...+1/28-1/31)=-(1/1-1/31)=-30/31
=>S=(-30/31):1/3=-90/31
\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)
\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)
\(A=3\left(1-\frac{1}{58}\right)\)
\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)