Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cũng đang làm bài này, dễ cực luôn
\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)
\(B=\frac{5}{3}\left[\frac{3}{4.7}-\frac{3}{7.10}+...+\frac{3}{25.28}\right]\)
\(B=\frac{5}{3}\left[\frac{1}{4}-\frac{1}{28}\right]=\frac{5}{14}\)
Chúc bạn học tốt !
\(S=100^2-99^2+...+2^2-1^2=\left(100+99\right)+\left(98+97\right)+..+\left(2+1\right)\)
\(S=100+99+..+2+1\)
\(S=1+2+..+99+100\)
\(2S=\left(1+100\right)+..+\left(1+100\right)\)
\(S=\frac{100.\left(100+1\right)}{2}=50.101\)
S=(22+42+62+.......+1002)-(12+32+52+......+992)
S=22+42+62+.....+1002-12+32+52+.....+992
S=(22-12)+(42-32)+.........+(1002-992)
Sử dụng công thức a2-b2=(a+b)(a-b)
S=(2+1)(2-1)+(4+3)(4-3)+.......+(100+99)(100-99)
S=3.1+7.1+.......+199.1
s=3+7+........+199
tính S =5050
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^100
2S = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101
2S - S = ( 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101 ) - ( 1 + 2 + 2^2 +2^3 +2^4 + 2^5 + .... + 2^100 )
S = 2^101 - 1
Vậy S = 2^101 - 1
Ta có :
S = 1 + 2 + 22 + 23 + 24 + 25 + ... + 2100
2S = 2 + 22 + 23 + 24 + 25 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + 25 + ... + 2101 ) - ( 1 - 2 - 22 - 23 - 24 - 25 - ... - 2100 )
S = 2101 - 1
S = 12 + 22 + 32 + ... + 1002
S = 1.1 + 2.2 + 3.3 + ... + 100.100
S = 1.(2 - 1 ) + 2. (3 - 1 ) + ... + 100. ( 101 - 1 )
S = 1.2 - 1 + 2. 3 - 2 + ... + 100 . 101 - 100
S = ( 1.2 + 2.3 + ... + 100 .101 ) - ( 1 + 2 + 3 + .. + 100 )
Đặt A = 1.2 + 2.3 + ... 100.101
3A = 1.2.3 + 2.3.3 + ... + 100.101.3
3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + ... + 100. 101 . ( 102 - 99 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 100.101.102 - 99.100.101
3A = 100.101.102
A = 100.101.102 : 3 = 343400
Vậy A = 343400
Đặt B = 1 + 2 + 3 + ... + 100
Số số hạng của B là : ( 100 - 1 ) : 1 + 1 = 100 ssh
B = ( 100 + 1 ) . 100 : 2 = 5050
Vậy B = 5050
=> S = A - B
S = 343400 - 5050
S = 338350
Vậy S = 338350
Học tốt