Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a+b=5
=>(a+b)^2=25
=>a^2+b^2+2ab=25
=>2ab=12
=>ab=6
mà a+b=5
nên a,b là các nghiệm của phương trình:
x^2-5x+6=0
=>x=2 hoặc x=3
=>(a,b)=(2;3) hoặc (a,b)=(3;2)
b: a^2-b^2=34
=>(a+b)(a-b)=34
=>a+b=17
mà a-b=2
nên a=19/2 và b=19/2-2=15/2
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
a - b = 3
=> ( a - b )2 = 9
=> a2 - 2ab + b2 = 9
=> 8 - 2ab = 9
=> 2ab = -1
=> ab = -1/2
a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= ( a3 - 3a2b + 3ab2 - b3 ) + ( 3a2b - 3ab2 )
= ( a - b )3 + 3ab( a - b )
= 33 + 3.(-1/2).3
= 27 - 9/2 = 45/2
\(a-b=3\)
\(\left(a-b\right)^2=3^2\)
\(a^2-2ab+b^2=9\)
\(8-2ab=9\)
\(2ab=8-9\)
\(2ab=-1\)
\(ab=-\frac{1}{2}\)
\(\hept{\begin{cases}a-b=3\\ab=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b\left(b+3\right)=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b^2+3b+\frac{1}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}b=\frac{-3+\sqrt{7}}{2}\\b=\frac{-3-\sqrt{7}}{2}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a=\frac{\sqrt{7}}{2}\\a=\frac{-\sqrt{7}}{2}\end{cases}}\)
TH 1
\(a=\frac{\sqrt{7}}{2};b=\frac{-3+\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32-5\sqrt{7}}{8}\)
TH 2
\(a=\frac{-\sqrt{7}}{2};b=\frac{-3-\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32+5\sqrt{7}}{8}\)
dùng tổng tỉ nha bạn
Ta có:\(\left(a+b\right)^2=4\Rightarrow a^2+2ab+b^2=4\Rightarrow a^2+b^2=4-2.\left(-35\right)=4+70=74\)
Lại có:P\(=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2.\left(74+35\right)=2.109=218\)
Vậy........................