Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng trên = 1-2^2/2^2 . 1-3^2/3^2 . ..... . 1-100^2/100^2
= -(2^2-1/2^2 . 3^2-1/3^2 . ...... . 100^2-1/100^2 )
= -(1.3/2^2 . 2.4/3^2 . ..... . 99.101/100)
= -(1.2.3. .... .99 . 3.4.5. ... .101 / 2.3.4 . ... . 100 . 2.3.4 . ..... . 100)
= -(1.2.3. ... . 99/2.3.4. .... .100) . (3.4.5. .... .101/2.3.4 . .... . 100)
= -1/100 . 101/2 = -101/200
Tk mk nha
\(\frac{-1}{2}\)\(-\left(\frac{3}{2}+x\right)=-22\)
\(\frac{-1}{2}\)\(-\frac{3}{2}\)\(-x=-22\)
\(-\left(\frac{1}{2}+\frac{3}{2}\right)-x=-22\)
\(-2-x=-22\)
\(x=-2-\left(-22\right)\)
\(x=20\)
không đúng thì thôi bạn đừng k sai nha!
\(C=\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\)
\(\Rightarrow\frac{2}{3}C=\frac{2}{3}\cdot\left(\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\right)\)
\(\Rightarrow\frac{2}{3}C=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{47\cdot49}\)
\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}C=\frac{46}{147}\)
\(\Rightarrow C=\frac{46}{147}:\frac{2}{3}\)
\(\Rightarrow C=\frac{23}{49}\)
3/3.5+3/5.7+3/7.9+.....+3/47.49
=1-1/5+1/5-1/7+...+1/47-1/49
=1-1/49
=48/49
\(A=\frac{2010\times2011-1005}{2010\times2010+1005}\)
\(A=\frac{2010\times\left(2010+1\right)-1005}{2010\times2010+1005}\)
\(A=\frac{2010\times2010+2010-1005}{2010\times2010+1005}\)
\(A=\frac{2010\times2010+1005}{2010\times2010+1005}\)
\(A=1\)
\(A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}\)
\(A=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot....\cdot\frac{2499}{50^2}\)
\(A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{49\cdot51}{50\cdot50}\)
\(A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(A=\frac{1\cdot51}{2\cdot50}=\frac{51}{100}\)
\(A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\cdot\frac{2499}{2500}\)
\(\Rightarrow A=\frac{1.3}{2\cdot2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{49.51}{50.50}\)
\(\Rightarrow A=\frac{1.3.2.4.3.5.....49.51}{2.2.3.3.4.4.....50.50}\)
\(\Rightarrow A=\frac{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot49\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot51\right)}{\left(3\cdot4\cdot\cdot\cdot\cdot\cdot50\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot50\right)}\)
\(\Rightarrow A=\frac{1.51}{2\cdot50}\)
\(\Rightarrow A=\frac{51}{100}\)
\(\frac{a+b}{b+b}=\frac{a}{2.b}+\frac{b}{2.b}=\frac{a}{b}.\frac{1}{2}+\frac{1}{2}\)
\(\Rightarrow\frac{a}{b}.\frac{1}{2}+\frac{1}{2}=\frac{a}{b}.4\Rightarrow\frac{1}{2}=\frac{a}{b}.4-\frac{a}{b}.\frac{1}{2}\Rightarrow\frac{1}{2}=a.\frac{7}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{1}{2}:\frac{7}{2}\Rightarrow\frac{a}{b}=\frac{1}{7}\)
\(\frac{21^2\cdot14\cdot125}{35^2\cdot6}=\frac{3^2\cdot7^2\cdot2\cdot25\cdot3}{5^2\cdot7^2\cdot2\cdot3}=\frac{3^4\cdot7^2\cdot2\cdot5^2}{5^2\cdot7^2\cdot2\cdot3}=3^3=27..\)
\(\frac{45^3\cdot20^4\cdot18^2}{180^5}=\frac{5^3\cdot9^3\cdot4^4\cdot5^4\cdot2^2\cdot9^2}{2^{10}\cdot3^{10}\cdot5^5}=\frac{5^7\cdot9^5\cdot4^4}{4^5\cdot9^5\cdot5^5}=\frac{1}{4}=0.25\)
\(\frac{2010.2011+4022}{2011.2014-4022}=\frac{2011.\left(2010+2\right)}{2011.\left(2014-2\right)}\)\(=\frac{2011.2012}{2011.2012}=1\)
\(\frac{2010\times2011+4022}{2011\times2014-4022}\)
\(=\frac{2011\times\left(2010+2\right)}{2011\times\left(2014-2\right)}\)
\(=\frac{2011\times2012}{2011\times2012}\)
\(=1\)
Cho mk xin cái li ke