\(A=\frac{2010X2011-1005}{2010X2010+1005}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(A=\frac{2010\times2011-1005}{2010\times2010+1005}\)

\(A=\frac{2010\times\left(2010+1\right)-1005}{2010\times2010+1005}\)

\(A=\frac{2010\times2010+2010-1005}{2010\times2010+1005}\)

\(A=\frac{2010\times2010+1005}{2010\times2010+1005}\)

\(A=1\)

2 tháng 4 2017

\(A=\frac{2010\times2011-1005}{2010\times2010+1005}\)

\(A=\frac{4042110-1005}{4040100+1005}\)

\(A=\frac{4041105}{4041105}\)

\(A=1\)

27 tháng 5 2015

\(1-\frac{1003}{1005}=\frac{2}{1005}>\frac{2}{1007}=1-\frac{1005}{1007}\Rightarrow\frac{1003}{1005}<\frac{1005}{1007}\)

27 tháng 5 2015

ta có : 1-1003/1005=2/1005

1-1005/1007=2/1007

vì 2/1005>2/1007 nên 1003/1005<1005/1007

26 tháng 4 2018

Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có : 

\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)

\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)

\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)

\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)

\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)

\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)

Mà : 

\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)

\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)

\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)

\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)

\(\Rightarrow\)\(A>4\) ( điều phải chứng minh ) 

Vậy \(A>4\)

Chúc bạn học tốt ~ 

5 tháng 5 2018

.........................

= \(\frac{1}{2}\). ( \(\frac{2}{1.3}\) + \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) ... +  \(\frac{2}{x.\left(x+2\right)}\) )

\(\frac{1}{2}\) . ( 1 - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{5}\) +  \(\frac{1}{5}\) - \(\frac{1}{7}\) + ... + \(\frac{1}{x}\)-  \(\frac{1}{x+2}\) ) 

= ................ 

Bạn tự làm tiếp nhé ! Chúc bạn học tốt :)

5 tháng 5 2018

 Các bạn ơi! giải chi tiết ra cho mình luôn nha 

22 tháng 3 2018

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1004}\)

\(A=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\)    (1)

\(B=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\)     (2)

\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}=1\)

28 tháng 3 2017

????????

21 tháng 2 2018

giúp mình với

27 tháng 2 2018

nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu