\(\frac{1}{201}< \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.

8 tháng 11 2017

a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008

          = 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1

=> ĐPCM

15 tháng 1 2016

ghytbvujgyik6uvc7982598

20 tháng 3 2017

Ta có: 1/1500 = 1/1500

           1/1001 > 1/1500           

           1/1002 > 1/1500

           1/1003 > 1/1500           =>     1/1001 + 1/1002 + 1/1003 + ... + 1/1499

            . . . . . . . . .  . .                        > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)

           1/1499 > 1/1500                     > 499/1500

=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3

Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3

k cho mình nha! Cảm ơn!

20 tháng 3 2017

bạn có thể thêm dấu ngoặc vào sau chỗ:

1/1001 > 1/1500

1/1002 > 1/1500

1/1003 > 1/1500

. . . . . . . . . . . . .

1/1499 > 1/1500

19 tháng 4 2017

Ta có: A=1/201+1/202+1/203+...+1/300

=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)

Ta có

1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4                   (1)

1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5                   (2)

từ (1) và (2)=> A<1/4+1/5=>A<9/20

Vậy A<9/20

~~~CHÚC BẠN HỌC GIỎI~~~        

=>A=

25 tháng 4 2024

Ta có: A=1/201+1/202+1/203+...+1/300

=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)

Ta có

1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4                   (1)

1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5                   (2)

từ (1) và (2)=> A<1/4+1/5=>A<9/20

Vậy A<9/20

9 tháng 8 2019

 Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)

=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

=> \(A>\frac{1}{5}-\frac{1}{101}\)

=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)

Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{4}-\frac{1}{100}\)

=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)

9 tháng 8 2019

dễ mà k đi