\(29^3\)

\(101^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

29=29 . 29 . 29 = 24389

1013 = 101.101.101 = 1030301 

HT nhé bn . sai thì thông cảm cho mình ạ 

______Vanilla______

7 tháng 9 2021

`a, 29^3`

`= (30-1)^3`

`= 30^3 - 3 . 30^2 . 1 + 3 . 30  .1^2 +1^3`

`= 30^3 +1^3 - 3 . 30 . 1 . (30 - 1)`

`= 27 000 +1-2610`

`= 24391`

`b, 101^3`

`= (100 +1)^3`

`= 100^3 + 3 . 100^2 . 1 + 3 . 100 . 1^2+1^3`

`=100^3 +1^3 + 3 . 100 . 1 . (100+1)`

`= 1000 000 +1+30300`

`= 1030301`

13 tháng 6 2018

a) a3 + 1 + 3a + 3a2 = ( a + 1)3 = 102 = 100

b) x3 + 3x2 + 3x + 1 = ( x + 1)3 = 203 = 8000 ( sửa đề)

c) a3 + 3a2 + 3a + 6 = a3 + 3a2 + 3a + 1 + 5 = ( a + 1)3 + 5 = 27005

d) a3 - 3a2 + 3a - 1 = ( a - 1)3 = 1003 = 1000000 ( sửa đề )

13 tháng 6 2018

sua de(ghi ra ok)

nhung de sai dau lai di sua

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

26 tháng 6 2017

a) 1012=(100+1)2=1002+2.50.2+12=10000+200+1=10201

b)1992=(200-1)2=2002 -2.200.1+12=40000-400+1=39601

c) 47.53=(50-3)(50+3)=502-32=2500-9=2491

26 tháng 6 2017

a) 1012 =(100+1)2 =10000+1=10001

b) 1992 =(199+1)2 =2002 =40000

c) 47.53=(40+7 .50+3)=20000+10=20010

d: \(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)

\(\Leftrightarrow12x^2+16=12x^2-12x-8\)

=>-12x=24

hay x=-2

e: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(x-5\right)^2\)

\(\Leftrightarrow x^2+7x+10-12x+9=x^2-10x+25\)

=>-5x+19=-10x+25

=>5x=6

hay x=6/5

f: \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

=>x-105=0

hay x=105

25 tháng 12 2017

ai làm ơn trả lời hộ mình câu này với

25 tháng 12 2017

a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)

a: \(A=x^2-10x+25+1\)

\(=\left(x-5\right)^2+1\)

\(=100^2+1=10001\)

b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)

\(=2a^2-8a-10-a^2+10a-25+36\)

\(=a^2+2a+1\)

\(=\left(a+1\right)^2=100^2=10000\)

c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)

d: \(E=a^3+3a^2+3a+1+5\)

\(=\left(a+1\right)^3+5\)

\(=30^3+5=27005\)

17 tháng 6 2019

\(A=\)\(x^5-70x^4-70^3+70x+29\)

\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3+\left(x-1\right)x+29\)

\(=x^5-x^5+x^4-x^4+x^3+x^2-x+29\)

\(=x^3+x^2-x+29\)

.........

17 tháng 6 2019

\(B=x^5-36x^4+37x^3-69x^2-34x+15\)

\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x-1\right)^2-\left(x-1\right)x+15\)

\(=x^5-x^5-x^4+x^4+2x^3-4x^2+4x-1-x^2+x+15\)

\(=2x^3-5x^2+5x+15\)

...........

19 tháng 3 2020

a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)

\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)

\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)

\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)

\(\Rightarrow x=105\)

b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)

\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)

\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)

\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)

\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)

\(\Rightarrow x=50\)

19 tháng 3 2020

a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)

\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)

\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)

\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)

b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x

21 tháng 12 2018

\(\frac{3}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2}.\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+3\right)\left(x+1\right)}=\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}\right)\)

Tương tự:

\(\frac{3}{\left(x+3\right)\left(x+5\right)}=\frac{3}{2}.\left(\frac{1}{x+3}-\frac{1}{x+5}\right)\)

\(\frac{3}{\left(x+5\right)\left(x+7\right)}=\frac{3}{2}\left(\frac{1}{x+5}-\frac{1}{x+7}\right)\)

.....

\(\frac{3}{\left(x+99\right)\left(x+101\right)}=\frac{3}{2}\left(\frac{1}{x+99}-\frac{1}{101}\right)\)

Cộng các vế lại ta có:

\(\frac{3}{\left(x+1\right)\left(x+3\right)}+\)\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\)\(\frac{3}{\left(x+5\right)\left(x+7\right)}+\)...\(+\frac{3}{\left(x+99\right)\left(x+101\right)}\)

=\(\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+...+\frac{1}{x+99}-\frac{1}{x+101}\right)\)

=\(\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+101}\right)\)