Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^2-10x+25+1\)
\(=\left(x-5\right)^2+1\)
\(=100^2+1=10001\)
b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)
\(=2a^2-8a-10-a^2+10a-25+36\)
\(=a^2+2a+1\)
\(=\left(a+1\right)^2=100^2=10000\)
c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)
d: \(E=a^3+3a^2+3a+1+5\)
\(=\left(a+1\right)^3+5\)
\(=30^3+5=27005\)
a) \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-4\)
\(\Rightarrow-3a-2=-4\)
\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)
b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)
\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)
\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)
\(\Rightarrow6a^2-6=6a^2+20a+6\)
\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
Lời giải:
a) x^3-3x^2+3x-1=0$
$\Leftrightarrow (x-1)^3=0\Rightarrow x=1$
b) ĐKXĐ: $x\neq 2$
\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
\(\Leftrightarrow \frac{3x-6}{x-2}=\frac{3-x}{x-2}\)
\(\Rightarrow 3x-6=3-x\Rightarrow x=2,25\)
c) ĐKXĐ: $x\neq -2$
\(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
\(\Leftrightarrow \frac{x+3}{x+2}=\frac{12}{(x+2)(x^2-2x+4)}\)
\(\Rightarrow (x+3)(x^2-2x+4)=12\)
$\Leftrightarrow x^3+x^2-2x=0$
$\Leftrightarrow x(x+2)(x-1)=0$
$\Rightarrow x=0$ hoặc $x=1$ (do $x\neq -2$)
Vậy........
d) Đề bài không rõ.
a.
\(\dfrac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow\dfrac{2a^2-4a+a-2}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a^2-4a\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{2a\left(a-2\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a+1\right)\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=\dfrac{2\left(a+1\right)}{a+1}\)
\(\Leftrightarrow2a+1=2a+2\)
Suy ra pt vô nghiệm
a) \(\dfrac{2a^{2^{ }}-3a-2}{a^2-4}\)=2
<=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)=2 (1)
ĐKXĐ: a-2 #0 => a#2
a+2#0 -> a#-2
(1) <=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)= \(\dfrac{2\left(a^{^2}-4\right)}{\left(a-2\right)\left(a+2\right)}\)
=> 2a2 - 3a - 2 = 2a2 - 8
<=> 2a2 - 3a - 2 - 2a2 + 8 = 0
<=> -3a + 6 = 0
<=> -3 ( a-2)
<=> -3 = 0 ( vô no )
a-2 = 0 => a = 2
Vậy với A=2 thì biểu thức có giá trị = 2
a) a3 + 1 + 3a + 3a2 = ( a + 1)3 = 102 = 100
b) x3 + 3x2 + 3x + 1 = ( x + 1)3 = 203 = 8000 ( sửa đề)
c) a3 + 3a2 + 3a + 6 = a3 + 3a2 + 3a + 1 + 5 = ( a + 1)3 + 5 = 27005
d) a3 - 3a2 + 3a - 1 = ( a - 1)3 = 1003 = 1000000 ( sửa đề )
sua de(ghi ra ok)
nhung de sai dau lai di sua