Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\dfrac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow\dfrac{2a^2-4a+a-2}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a^2-4a\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{2a\left(a-2\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a+1\right)\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=\dfrac{2\left(a+1\right)}{a+1}\)
\(\Leftrightarrow2a+1=2a+2\)
Suy ra pt vô nghiệm
a) \(\dfrac{2a^{2^{ }}-3a-2}{a^2-4}\)=2
<=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)=2 (1)
ĐKXĐ: a-2 #0 => a#2
a+2#0 -> a#-2
(1) <=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)= \(\dfrac{2\left(a^{^2}-4\right)}{\left(a-2\right)\left(a+2\right)}\)
=> 2a2 - 3a - 2 = 2a2 - 8
<=> 2a2 - 3a - 2 - 2a2 + 8 = 0
<=> -3a + 6 = 0
<=> -3 ( a-2)
<=> -3 = 0 ( vô no )
a-2 = 0 => a = 2
Vậy với A=2 thì biểu thức có giá trị = 2
Lời giải:
Vì \(2a-b=5\Rightarrow b=2a-5\Rightarrow 2b=4a-10\)
\(\Rightarrow 7a-2b=7a-(4a-10)=3a+10\)
\(\Rightarrow \frac{7a-2b}{3a+10}=\frac{3a+10}{3a+10}=1\)
Lại có:
\(2a-b=5\Rightarrow 2a=b+5\Rightarrow 4a=2b+10\)
\(\Rightarrow 7b-4a=7b-(2b+10)=5b-10\)
\(\Rightarrow \frac{7b-4a}{15b-30}=\frac{5b-10}{15b-30}=\frac{5b-10}{3(5b-10)}=\frac{1}{3}\)
Vậy: \(A=1-\frac{1}{3}=\frac{2}{3}\)
2a-b=5 nên b=2a-5
\(A=\dfrac{7a-2b}{3a+10}-\dfrac{7b-4a}{15b-30}\)
\(=\dfrac{7a-2\left(2a-5\right)}{3a+10}-\dfrac{7\left(2a-5\right)-4a}{15\left(2a-5\right)-30}\)
\(=\dfrac{7a-4a+10}{3a+10}-\dfrac{14a-35-4a}{30a-75-30}\)
\(=1-\dfrac{5\left(2a-7\right)}{15\left(2a-7\right)}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
Theo bài ra:
\(\dfrac{3a-1}{3a+1}+\dfrac{a-3}{a+3}=2\)
ĐKXĐ:\(x\ne\left\{-\dfrac{1}{3};-3\right\}\)
=>(3a-1)(a+3)+(a-3)(3a+1)=2
<=>3a2+8a-3+3a2-8a-3=2
<=>6a2=8
<=>a2=\(\dfrac{4}{3}\)
<=>a=\(_-^+\dfrac{2}{\sqrt{3}}\)
Vậy...
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
Đây là câu a/
https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228
Còn câu b thì như sau:
Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.
\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)
Biểu thức có giá trị bằng 2 thì: