Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x2-2xy-4x2+y2
= (x2-2xy+y2)-(2x)2
= (x-y)2-(2x)2 = (x-y-2x)(x-y+2x)(1)
Thay x=6; y=-4; z=45 ta được:
(1)<=>(6+4-90)(6+4+90)= (10-90).(10+90)=-80.100= -8000
a) \(x^2-2xy-4z^2+y^2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)
\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)
\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)
Tại x=6, y=-4, z=45
\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)
b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)
\(\Leftrightarrow4x^2+8x-11\)
Tại x=0,5 ta có:
\(4.\left(0,5\right)^2+8.0,5-11=-6\)
a)Đặt \(A=x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay \(x=6;y=-4;z=45\) vào A, ta có:
\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)
\(=100\cdot\left(-80\right)\)
\(=-8000\)
Vậy \(A=-8000\)
b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)
\(=3x^2+12x-63+x^2-4x+52\)
\(=4x^2+8x-11\)
Thay \(x=0,5\) vào B, ta có:
\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)
\(=1\cdot4-11\)
\(=-6\)
Vậy \(B=-6\)
\(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\) ( 1 )
Thay vào bấm máy tính ta được ( 1 )=19
b) \(3\left(x-3\right)\left(x+7\right)-\left(x-4\right)^2\)
\(=\left(3x-9\right)\left(x+7\right)-\left(x^2-8x+16\right)\)
\(=3x^2+12-63-x^2+8x-16\)
\(=2x^2+20x-79\)
\(=2x^2+20x+50-129\)
\(=2\left(x+5\right)^2-129\)
Thay x vào
\(A=x^2-2xy-4z^2+y^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y+2z\right)\left(x-y-2z\right)\)
\(=\left(6+4+45\right)\left(6+4-45\right)\)
\(=-1925\)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
x^2-2xy-4z^2+y^2 =(x^2-2xy+y^2)-(2z)^2 =(x-y)^2-(2z)^2 =(x-y-2z)(x-y+2z) Tại x=6;y=-4;z=45 bt có gái trị là (6+4-2.45).(6+4+45)=-80.100=-8000 Vậy bt có giá trị là -8000
x2 - 2xy - 4z2 + y2 tại x = 6 ; y = -4 ; z = 45
= x2 - 2xy + y2 - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y + 2z ) ( x - y - 2z )
Thay x = 6 ; y = -4 ; z = 45 vào biểu thức , ta có :
( x - y + 2z ) ( x - y - 2z )
= ( 6 + 4 + 2 . 45 ) ( 6 + 4 - 2 . 45 )
= 100 . ( -80 )
= -8000
a,5x^2 - 10xy + 5y^2 - 20z^2
=5(x^2 -2xy +y^2-4z^2 )
=5[(x-y)^2-(2z)^2 ]
=5 .(x-y-2z)(x-y+2z)
b,.= (5x^2+5xy)-(x+y)
=5x(x+y)-(x+y)
=(x+y)(5x-1)
d,x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
e,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
f,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
g,2x^2(3x - 5)
= 2x^2 x 3x - 2x^2 x 5
= 6x^3 - 10x^2
\(\text{1) }\)
\(\text{a) }5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
\(\text{b) }5x^2+5xy-x-y\)
\(=\left(5x^2-x\right)+\left(5xy-y\right)\)
\(=x\left(5x-1\right)+y\left(5x-1\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
\(\text{c) }2\left(x+4\right)-x^2+16\)
\(=2\left(x+4\right)-\left(x^2-16\right)\)
\(=2\left(x+4\right)-\left(x+4\right)\left(x-4\right)\)
\(=\left(x+4\right)\left(2-x+4\right)\)
\(=\left(x+4\right)\left(6-x\right)\)
\(\text{d) }x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=\left(x^2+3x\right)+\left(x+3\right)\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x+1\right)\)
\(\text{e) }x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=\left(x^2+6x\right)-\left(x+6\right)\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
thay x=0,5 vào biểu thức ta có:
3.(0,5-3).(0,5+7)+(0,5-4)^2+48
=3.(-2,5).7,5+(-3,5)^2+48
=3.(-2,5).7,5+12,25+48
=-7,5.(7,5)+12,25+48
=-56,25+12,25+48
=-44+48
=4
Ta có: \(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)