Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2xy-4z^2+y^2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)
\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)
\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)
Tại x=6, y=-4, z=45
\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)
b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)
\(\Leftrightarrow4x^2+8x-11\)
Tại x=0,5 ta có:
\(4.\left(0,5\right)^2+8.0,5-11=-6\)
a)Đặt \(A=x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay \(x=6;y=-4;z=45\) vào A, ta có:
\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)
\(=100\cdot\left(-80\right)\)
\(=-8000\)
Vậy \(A=-8000\)
b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)
\(=3x^2+12x-63+x^2-4x+52\)
\(=4x^2+8x-11\)
Thay \(x=0,5\) vào B, ta có:
\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)
\(=1\cdot4-11\)
\(=-6\)
Vậy \(B=-6\)
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b)\(x^2-2xy+y^2-z^2\)
\(=\left(x^2-2xy+y^2\right)-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
c)\(5x-5y+ax-ay\)
\(=5\left(x-y\right)+a\left(x-y\right)\)
\(=\left(5+a\right)\left(x-y\right)\)
d)\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Bài 2 :
a) \(x^2-2xy-47^2+y^2\)
\(=x^2-2xy+y^2-47^2\)
\(=\left(x-y\right)^2-47^2\)
\(=\left(x-y-47\right)\left(x-y+47\right)\)
Bài 1
a) x2 - xy + x - y
= x.(x - y) + (x - y)
= (x - y) . (x + 1)
b) x2 - 2xy + y2 - z2
= (x - y)2 - z2
= (x - y - z) . (x - y + z)
c) 5x - 5y + ax - ay
= 5 . (x - y) + a . (x - y)
= (5 + a ) . (x - y)
d) a3 - a2x - ay + xy
=
a3−a2x−ay+xya3−a2x−ay+xy
=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)
=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)
=(a2−y)(a−x)
a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)
b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)
\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)
c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)
d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)
e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)
= 31
f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)
C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
b) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(2y\right)\left(2x\right)\)
c) \(\left(3x+1\right)^2-\left(x+1\right)^2=4x\left(2x+1\right)\)
f) \(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(d,x^2-10x+25=\left(x-5\right)^2\)
\(e,x^2-x-y^2-y=x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(h,xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=xy\left(x+y\right)+yz\left(y+z\right)+xyz+xz\left(x+z\right)+2xyz+xyz\)
\(=xy\left(x+y\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)
\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(g,3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48\)
\(=3x^2+12x-63+x^2-8x+64\)
\(=4x^2+4x+1=\left(2x+1\right)^2\)
\(j,x^3-x+y^3-y=x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
\(A=x^2-2xy-4z^2+y^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y+2z\right)\left(x-y-2z\right)\)
\(=\left(6+4+45\right)\left(6+4-45\right)\)
\(=-1925\)