K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

a) A=852+2.85.15+152=(85+15)2=1002=10000
b) B=(20-19)(20+19)+(18-17)(18+17)+...+(2-1)(2+1)=20+19+18+17+...+2+1= 20.21/2=210

7 tháng 1 2018

a, A= 852 + 170.15 + 225

    A= ( 85+ 15)2

    A= 1002

     A= 10000

22 tháng 10 2020

a) \(=\left(127+73\right)^2=200^2=40000\)

b) \(=18^8-\left(18^8-1\right)=1\)

c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1=5050\)

d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)

rồi giải ra như trên

21 tháng 10 2023

loading...  loading...  loading...  

27 tháng 11 2021

em đang cần gấp các cao nhân ơi

22 tháng 9 2019

ta có: a200 + b200 = a201 + b201 = a202 + b202

-----> a200 + b200 + a202 + b202 = 2.a201 + 2.b201

-----> a200 - 2.a201 + a202 + b200 - 2.b201 + b202 = 0

----> a200.(1-a)2 + b200. (1-b)2 = 0

mà \(a^{200}.\left(1-a\right)^2\ge0;b^{200}.\left(1-b\right)^2\ge0.\)

a và b là các số thực không âm

----> (1-a)2 = 0 ----> a = 1

(1-b)2 = 0 ----> b= 1

----> B =a2019 + b2020 = 1+1 = 2

22 tháng 9 2019

GIẢI

\(a^{200}+b^{200}=a^{201}+b^{201}\)

\(\Rightarrow a^{200}\left(a-1\right)+b^{200}\left(b-1\right)=0\left(1\right)\)

\(a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Rightarrow a^{201}\left(a-1\right)+b^{201}\left(b-1\right)=0\left(2\right)\)

Ta lấy ( 2 ) - ( 1 ) suy ra :
\(\left(a-1\right)\left(a^{201}-a^{200}\right)+\left(b-1\right)\left(b^{201}-b^{200}\right)=0\)

\(\Leftrightarrow a^{200}\left(a-1\right)^2+b^{200}\left(b-1\right)^2=0\)

Ta thấy : \(a^{200}\left(a-1\right)^2\ge0;b^{200}\left(b-1\right)^2\ge0\) với mọi a , b 

Do đó để tổng của chúng bằng 0 thì :

\(a^{200}\left(a-1\right)^2=b^{200}\left(b-1\right)^2=0\)

\(\Rightarrow a=0\) hoặc \(a=1\) ; \(b=0\) hoặc \(b=1\)

Suy ra \(\left(a,b\right)=\left(1,1\right);\left(0,0\right);\left(1,0\right);\left(0,1\right)\)

\(\Rightarrow B=a^{2019}+b^{2020}\) có thể nhận những giá trị \(0;2;1\)

Chúc bạn học tốt !!!

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

27 tháng 12 2020

Ta có \(\left(a^{201}+b^{201}\right)^2=\left(a^{200}+b^{200}\right)\left(a^{202}+b^{202}\right)\Leftrightarrow2a^{201}b^{201}=a^{200}b^{202}+a^{202}b^{200}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\).

Khi đó \(a^{200}=a^{201}\Leftrightarrow a=1\).

Do đó P = 2.