Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1. \(-10x^3y\left(\dfrac{2}{5}x^2y+\dfrac{3}{10}xy^2\right)+3x^4y^3=-4x^5y^2-3x^4y^3+3x^4y^3=-4x^5y^2\)
2.
a. \(A=85^2+170\cdot15+225=85^2+2\cdot85\cdot15+15^2=\left(85+15\right)^2=100^2=10000\)
Vậy A = 10000
b. \(B=20^2-19^2+18^2-17^2+...+2^2-1^2=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(2^2-1^2\right)=\left(20-19\right)\left(20+19\right)+...+\left(2-1\right)\left(2+1\right)=39+35+31+27+23+19+15+11+7+3=\left(39+31+19+11\right)+\left(35+15+23+27\right)+\left(7+3\right)=100+100+10=210\)
Vậy B = 210
c. \(\left(15^4-1\right)\left(15^4+1\right)-3^8\cdot5^8=15^8-1-15^8=-1\)
Vậy C = -1
Bài 2:
Ta có: \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
\(\Rightarrow\left(x^2-2x-y^2+1\right):\left(x-y-1\right)=[\left(x-y-1\right)\left(x+y-1\right)]:\left(x-y-1\right)=x+y-1\)
Vậy \(\left(x^2-2x-y^2+1\right):\left(x-y-1\right)=x+y-1\)
Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=a+b\) (nếu a,b là hai số liên tiếp)
\(\Rightarrow B=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(2^2-1^2\right)\)
\(B=20+19+18+...+1=\frac{20.21}{2}=210\)
Giải:
a) Sửa đề: 1272 + 146.127 + 732
\(127^2+146.127+73^2=\left(127+7\right)^2=200^2=40000\)
b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^4-1\right)^2=18^8-18^8-1=-1\)
c) \(20^2+18^2+16^2+...+4^2+2^2-\left(19^2+17^2+...+3^2+1\right)\)
\(=20^2+18^2+16^2+...+4^2+2^2-19^2-17^2-...-3^2-1\)
\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+\left(16^2-15^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1\right)\)
\(=20+19+18+17+16+15+...+4+3+2+1\)
\(=\dfrac{\left(20+1\right).20}{2}=210\)
Chúc bạn học tốt!
a) A=852+2.85.15+152=(85+15)2=1002=10000
b) B=(20-19)(20+19)+(18-17)(18+17)+...+(2-1)(2+1)=20+19+18+17+...+2+1= 20.21/2=210
a, A= 852 + 170.15 + 225
A= ( 85+ 15)2
A= 1002
A= 10000