Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1999}{2004}+\frac{2001}{2005}+\frac{5}{2004}+\frac{4}{2005}\)
=\(\left(\frac{1999}{2004}+\frac{5}{2004}\right)+\left(\frac{2001}{2005}+\frac{4}{2005}\right)\)
=\(1+1\)
=2
\(\frac{1999}{2004}+\frac{2001}{2005}+\frac{5}{2004}+\frac{4}{2005}\) = \(\frac{1999}{2004}+\frac{5}{2004}+\frac{2001}{2005}+\frac{4}{2005}\)
= \(1+1\)
= \(2\)
Click mik nha !!!!!!!!!!!!!!!!!!!
\(=\frac{2001.\left(2000+2\right)+1000}{2001.\left(2000+3\right)-1001}\)
\(=\frac{2001.2000+2001.2+1000}{2001.2000+2001.3-1001}\)
\(=\frac{2001.2+1000}{2001.3-1001}\)
\(=\frac{2001.2+1000}{2001.2+2001-1001}\)
\(=\frac{2001.2+1000}{2001.2+1000}\)
\(=1\)
2001 x 2002 + 1000 / 2001 x 2003 - 1001 = 2001 x 2002 + 1000 / 2001 x (2002 + 1) - 1001 = 2001 x 2002 + 1000 / 2001 x 2002 + 2001 - 1001 = 1000 / 2001 - 1001 = 1000 / 1000 = 1
\(\frac{2005.2007-1}{2004+2005.2006}\)
\(=\frac{2005.2006+2005-1}{2004+2005.2006}\)
\(=\frac{2005.2006+2004}{2004+2005.2006}\)
\(=1\)
\(=\frac{2015\left(2006+1\right)-1}{2004+2005.2006}=\frac{2005.2006+2005-1}{2004+2005.2006}=1\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(\frac{2005\cdot2004-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot\left(2003+1\right)-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2005-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2004}{2003\cdot2005+2004}\)
\(=1\)
2005 x 2004 - 1 / 2003 × 2005 + 2004
= 2005 × (2003 + 1) - 1 / 2003 × 2005 + 2004
= 2005 × 2003 + (2005 - 1) / 2003 × 2005 + 2004
= 2005 × 2003 + 2004 / 2003 × 2005 + 2004
= 1
. là x á nha
=\(\frac{2006}{2008}.\frac{2001}{2004}.\frac{2008}{2002}.\frac{2004}{2006}.\frac{1001}{2001}\)
=\(\frac{2006.2001.2008.2004.1001}{2008.2004.2002.2006.2001}\)
=\(\frac{1001}{2002}\)
= \(\frac{2006\cdot2001\cdot2008\cdot2004\cdot1001}{2008\cdot2004\cdot2002\cdot2006\cdot2001}\)
= \(\frac{1\cdot1\cdot1\cdot1\cdot1001}{1\cdot1\cdot2002\cdot1\cdot1}\)
= \(\frac{1}{2}\)
\(\frac{2005x2004-1}{2003x2005+2004}\)=\(\frac{4018019}{4018019}\)= 1
\(\dfrac{2001+2002\cdot2003}{2003\cdot2004-2005}\)
\(=\dfrac{2001+\left(2001+1\right)\left(2001+2\right)}{\left(2001+2\right)\cdot\left(2001+3\right)-2001-4}\)
\(=\dfrac{2001+2001^2+3\cdot2001+2}{2001^2+5\cdot2001+6-2001-4}\)
\(=\dfrac{2001^2+4\cdot2001+2}{2001^2+4\cdot2001+2}\)
=1