K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

\(A=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}}\)

\(A=\frac{4024}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{2012.2013:2}}\)

\(A=\frac{4024}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{2013}\right)}\)

\(A=\frac{4024}{1+1-\frac{2}{2013}}=\frac{4024}{2-\frac{2}{2013}}=4024:\frac{4024}{2013}=\frac{4024.2013}{4024}=2013\)

Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)

\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)

\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)

\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)

Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)

25 tháng 6 2018

\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)

\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)

Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức

25 tháng 6 2018

\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)

\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)

\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)

Nên \(x-2010=0\)

\(\Rightarrow\)\(x=2010\)

Vậy \(x=2010\)

Chúc bạn học tốt ~ 

24 tháng 9 2016

Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)

\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)

      (2012 số 1)                 (2011 phân số)

\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

=> \(A=\frac{1}{2013}\)

24 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(\Rightarrow A=\frac{1}{2013}\)

Vậy \(A=\frac{1}{2013}\)

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)