Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B = 202 - 192 + 182 - 172 + ..... + 22 - 12
=> B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ..... + (2 - 1)(2 + 1)
=> B = 39 + 35 + 31 + ..... + 3
Số số hạng của dãy trên là :
(39 - 3) : 4 + 1 = 10 (số)
Tổng B là :
(39 + 3) x 10 : 2 = 210
Vậy B = 210
Ta có : \(C=\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
\(\Rightarrow C=\left(15^4\right)^2-1-15^8\)
\(\Rightarrow C=15^8-1-15^8\)
=> C = -1
Vậy C = - 1
Bài 1:
\(A=23^2+46\cdot37+37^2=23^2+2\cdot23\cdot37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-44\cdot27+22^2=27^2-2\cdot27\cdot22+22^2=\left(27-22\right)^2=5^2=25\)
Bài 2:
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì: \(\left(x-2\right)^2\ge0\) với mọi x
=> \(\left(x-2\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=2
\(A=23^2+2.23.37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-2.27.22+22^2=\left(27-22\right)^2=5^2=25\)
\(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
=> A min=1 khi x=2
a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)
( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64
( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3
( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3
( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27
HĐT số 6 + 7 bạn nhé ^^
a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)
b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)
c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)
d: \(=-9x^3-1-12y+27xy\)
Thay x = 1
=> f(1) = \(\left(1^2+1+2\right)^{20}\)= \(a_0.1^{40}+a_1.1^{39}+a_2.1^{38}+...+a_{39}.1+a_{40}\)
= \(a_0+a_1+a_2+...+a_{39}+a_{40}\)= S
=> S = \(\left(1^2+1+2\right)^{20}\)
=> S = \(4^{20}\)
a, 1001^2=1001.1001=1001.(1000+1)=1001.1000+1001=1001000+1001=...
b,999^2=999.999=999.(1000-1)=999.1000-999=999000-999=...
c, 22,9.30,1=22,9.(30+0,1)=22,9.30+22,9.0,1=22,9.10.3+2,29=229.3+2,29=687+2,29=689,29 (tui khong biet giau mu len phai viet vay thong cam nhung van dung day)
20182 - 20172 + 20162 - 20152 + ... + 22 - 12
= (2018+2017)(2018-2017) + (2016+2015)(2016-2015) + ... + (2+1)(2-1)
= 2018 + 2017 + 2016 + 2015 + ... + 2 + 1
= \(\dfrac{\left(1+2018\right).2018}{2}=2037171\)
\(40^2-39^2+38^2-37^2+..........+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+..........+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...........+\left(2-1\right)\left(2+1\right)\)
\(=40^2+39^2+38^2+37^2+.........+2^2+1^2\)
\(=\dfrac{40.41}{2}=820\)