Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)
b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)
d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{1}{x^2+x+1}\)
e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x}{x+2y}\)
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)
\(=x^3-3^3=x^3-27\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)
\(=x^3-2^3=x^3-8\)
c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)
\(=x^3+4^3=x^3+64\)
d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)
\(=x^6-\frac{1}{27}\)
f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
a) \(\frac{6xy+4y}{4x^2y^2}+\frac{2xy-4y}{4x^2y^2}\)
\(=\frac{6xy+4y+2xy-4y}{4x^2y^2}\)
\(=\frac{8xy}{4x^2y^2}\)
\(=\frac{2}{xy}\)
b) \(\frac{5}{x+3}-\frac{3}{x-3}+\frac{30}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{30}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15-3x-9+30}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2}{x-3}\)
c) \(\frac{2x+8}{\left(x+2\right)^2}:\frac{x+4}{x+2}\)
\(=\frac{2\left(x+4\right)}{\left(x+2\right)^2}\cdot\frac{x+2}{x+4}\)
\(=\frac{2\left(x+4\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)\left(x+4\right)}\)
\(=\frac{2}{x+2}\)
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
Bài 1:
a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)
\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)
\(\Leftrightarrow-5=0\)(vl)
Vậy: \(x\in\varnothing\)
b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
hay x=1
Vậy: x=1
c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)
\(\Leftrightarrow2x-72=0\)
\(\Leftrightarrow2\left(x-36\right)=0\)
mà 2>0
nên x-36=0
hay x=36
Vậy: x=36
d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)
\(\Leftrightarrow120x+36=56-64x\)
\(\Leftrightarrow120x+36-56+64x=0\)
\(\Leftrightarrow184x-20=0\)
\(\Leftrightarrow184x=20\)
hay \(x=\frac{5}{46}\)
Vậy: \(x=\frac{5}{46}\)
e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)
\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)
\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)
\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)
\(\Leftrightarrow-23x+29=0\)
\(\Leftrightarrow-23x=-29\)
hay \(x=\frac{29}{23}\)
Vậy: \(x=\frac{29}{23}\)
f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)
\(\Leftrightarrow2x+8-10x-50-25=0\)
\(\Leftrightarrow-8x-67=0\)
\(\Leftrightarrow-8x=67\)
hay \(x=\frac{-67}{8}\)
Vậy: \(x=\frac{-67}{8}\)
g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)
\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)
\(\Leftrightarrow10-5x-8x-8+12x-30=0\)
\(\Leftrightarrow-x-28=0\)
\(\Leftrightarrow-x=28\)
hay x=-28
Vậy: x=-28
h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)
\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)
\(\Leftrightarrow0x=0\)
Vậy: \(x\in R\)
Bài 2:
a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)
b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)
Từ (1) và (2) suy ra:
\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)
c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)
\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: Tập nghiệm S={-3}
d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)
\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)
\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)
\(\Leftrightarrow12-7x=0\)
\(\Leftrightarrow7x=12\)
hay \(x=\frac{12}{7}\)
Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)
e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x
\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)
\(\Leftrightarrow31x-1=0\)
\(\Leftrightarrow31x=1\)
hay \(x=\frac{1}{31}\)
Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)
a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)
( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64
( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3
( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3
( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27
HĐT số 6 + 7 bạn nhé ^^