Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
đúng cái nhé
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
Ta có;\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+....+\frac{4}{19\times21}\)
\(=2\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{19\times21}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\times\left(1-\frac{1}{21}\right)=2\times\frac{20}{21}=\frac{40}{21}\)
4/1 x 3 + 4/ 3 x 5 + 4/ 5 x 7 + ....+ 4/ 17 x 19 + 4/ 19 x 21
= 2 x ( 2/ 1 x 3 + 2/ 3 x 5 + 2/ 5 x 7 + ...+ 2/ 17 x 19 + 2/ 19 x 21 )
= 2 x ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/17 - 1/19 + 1/19 - 1/21 )
= 2 x ( 1 - 1/21 )
= 2 x 20/21
= 40/21
Chúc bạn học giỏi !!!
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=1-\dfrac{1}{17}\)
\(=\dfrac{16}{17}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)
\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=2-\dfrac{1}{17}\)
\(=\dfrac{33}{17}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+.....+\frac{3}{19.21}\)
\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+......+\frac{2}{19.21}\right)\)
\(A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{19}-\frac{1}{21}\right)\)
\(A=\frac{3}{2}.\left(1-\frac{1}{21}\right)\)
\(A=\frac{3}{2}.\frac{20}{21}\)
\(A=\frac{10}{7}\)
Ta có:
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{19.21}\)
\(\Rightarrow A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)
\(\Rightarrow A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{21}\right)=\frac{2}{3}.\frac{20}{21}=\frac{40}{63}\)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)