Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7^{2005}+7^{2004}\right):7^{2004}=7^{2005}:7^{2004}+7^{2004}:7^{2004}=7+1=8\)
\(\left(11^{2003}+11^{2002}\right):11^{2002}-11^{2003}:11^{2002}+11^{2002}:11^{2002}=11+1=12\)
Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)
Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)
\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)
=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>B<A
Vậy B<A
a)\(\left(5^{2005}+5^{2004}+5^{2003}\right)\)
\(\Rightarrow5^{2003}.\left(5^2+5+1\right)\)
\(\Rightarrow5^{2003}.31⋮31\)
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)
N=2003(2004(9+8+7+...+2)+2015)+1
Dat A=9+8+7+...+2
A có số số hạng là (9-2)*1+1=8 so hang
A=(9+2)*8/2=44
N=2003(2004*44+2005)+1
N=2003*(88176+2005)+1
N=2003*90181+1=180632543+1=180632544
số to quá
DUYỆT NHA
Ta có : \(N=2003.(2004^{9}+2004^{8}+...+2004^{2}+2005\))+1
\(N=(2004-1)(2004^{9}+2004^{8}+...+2004^{2}+2004+1)+1\)
\(N=[2004(2004^{9}+2004^{8}+...+2004^{2}+2004+1)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)
\(N=[(2004^{10}+2004^{9}+...+2004^{3}+2004^{2}+2004)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)\(N=2004^{10}+2004^9+...+2004^3+2004^2+2004-2004^9-2004^8-...-2004^2-2004-1+1\)\(N=2004^{10}\)