Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)
Lại có :
\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
A > B nhé
A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004
B = 20042005 / 20042005 +2004
Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )
Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha !
Chắc là A = B
nếu đúng thì tk cho mk nha !
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)
Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)
\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)
=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>B<A
Vậy B<A
Ta có : \(N=2003.(2004^{9}+2004^{8}+...+2004^{2}+2005\))+1
\(N=(2004-1)(2004^{9}+2004^{8}+...+2004^{2}+2004+1)+1\)
\(N=[2004(2004^{9}+2004^{8}+...+2004^{2}+2004+1)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)
\(N=[(2004^{10}+2004^{9}+...+2004^{3}+2004^{2}+2004)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)\(N=2004^{10}+2004^9+...+2004^3+2004^2+2004-2004^9-2004^8-...-2004^2-2004-1+1\)\(N=2004^{10}\)
\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)
Vậy A > B
Ta có :
\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)
\(\Rightarrow\) \(A>1>B\)
\(\Rightarrow\) \(A>B\)
<
quy đồng mẫu