Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)
Vậy A > B
Ta có :
\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)
\(\Rightarrow\) \(A>1>B\)
\(\Rightarrow\) \(A>B\)
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)
\(B=\dfrac{2005}{x^m}+\dfrac{2003}{x^n}=\dfrac{2004}{x^m}+\dfrac{1}{x^m}+\dfrac{2004}{x^n}-\dfrac{1}{x^n}=A+\left(\dfrac{1}{x^m}-\dfrac{1}{x^n}\right)\)
\(\Rightarrow A< B\)
mình ko bt đúng hay sai nữa
Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\) và \(B=\dfrac{2004.2005-1}{2004.2005}\)
Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)
\(=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)
\(=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Nên \(A< B\)
Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)
~ Học tốt ~
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)
Lại có :
\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
A > B nhé
A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004
B = 20042005 / 20042005 +2004
Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )
Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha !
Chắc là A = B
nếu đúng thì tk cho mk nha !
Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)
Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)
\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)
=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>B<A
Vậy B<A