Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{1\times2}{15\times2}+\frac{1\times2}{21\times2}+\frac{1\times2}{28\times2}+\frac{1\times2}{946\times2}+\frac{1\times2}{990\times2}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2\times\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2\times\left(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{43\times44}+\frac{1}{44\times45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{9}{45}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
Chúc bạn học tốt
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+....+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+.....+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2.\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{43.44}+\frac{1}{44.45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{45}\right)=2.\frac{8}{45}=\frac{16}{45}\)
Vậy M=16/45
Tính tổng ;
M = \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+.....+\frac{1}{946}+\frac{1}{990}\)
HELP ME
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{2}\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\right)\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{45}=\frac{9}{45}-\frac{1}{45}=\frac{8}{45}\)
\(\Rightarrow M=\frac{8}{45}:\frac{1}{2}=\frac{8}{45}.2=\frac{16}{45}\)
nhớ ấn đúng cho mình nha
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=2\times\frac{8}{45}\)
\(=\frac{16}{45}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(=\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+...+\frac{2}{43\cdot44}+\frac{2}{44\cdot45}\)
\(=2\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{43\cdot44}+\frac{1}{44\cdot45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)=2\left(\frac{9}{45}-\frac{1}{45}\right)=2\cdot\frac{8}{45}=\frac{16}{45}\)
Chúc bạn học tốt!
Câu a đề không chính xác
câub) B= \(\frac{1}{1.2.3}\frac{ }{ }\)+\(\frac{1}{2.3.4}\)+\(\frac{1}{3.4.5}\)+......+\(\frac{1}{9.10.11}\)
B= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)+.........+ \(\frac{1}{2}\left(\frac{1}{9.10}-\frac{1}{10.11}\right)\)
B= \(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10.11}\right)\)= \(\frac{27}{55}\)
B=1/1.2.3 +1/2.3.4 +1/3.4.5 +.....+1/9.10.11
=1/2.(2/1.2.3 +2/2.3.4 +2/3.4.5 +.......+2/9.10.11)
=1/2.(1/1.2 -1/2.3 +1/2.3 -1/3.4 +1/4.5 +........+1/9.10 -1/10 .11)
=1/2 .(1/1.2 -1/10.11)
= 1/2 .27/55
=27/110
B=1/1.2.3 +1/2.3.4 +1/3.4.5 +.....+1/9.10.11
=1/2.(2/1.2.3 +2/2.3.4 +2/3.4.5 +.......+2/9.10.11)
=1/2.(1/1.2 -1/2.3 +1/2.3 -1/3.4 +1/4.5 +........+1/9.10 -1/10 .11)
=1/2 .(1/1.2 -1/10.11)
= 1/2 .27/55
=27/110
\(N=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{946}+\frac{1}{990}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{43\times44}+\frac{2}{44\times45}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{44\times45}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\times\left(1-\frac{1}{45}\right)\)
\(=\frac{88}{45}\)