\(\left(a-b\right)^2\)biet \(a+b=8\)va 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

  Thay vào ta có : \(8^2-4\times10\)

                         \(=64-40\)

                         \(=24\)

Vậy khi \(a+b=8,ab=10\) thì \(\left(a-b\right)^2=24\)

1 tháng 12 2016

Ta có (a-b)^2=a^2-2ab+b^2

                  = (a^2+2ab+b^2)-2ab

                  =(a+b)^2-2ab           (1)

Thay a+b=8 va ab=10 vao (1)

=> (a-b)^2=8^2-2*10

               =64-20

               =44

19 tháng 12 2019

Theo đề ra ta có : a2+b2=2(8+ab)

⇔a2+b2-2ab=16

⇔(a-b)2=16

⇔a-b=4

Ta có P=a2(a+1)b2(b1)+ab3ab(ab+1)+64

⇔P=a3+a2-b3+b2+ab-3a2b+3ab2-3ab+64

⇔P=(a3-b3)+(a2-2ab+b2)-(3a2b-3ab2)+64

⇔P=(a-b)(a2+ab+b2)+(a-b)2-3ab(a-b)+64

⇔P=(a-b)(a2+ab+b2+1-3ab)+64

⇔P=4[(a-b)2+1]+64

⇔P=4(16+1)+64= 132

⇔P= 132

12 tháng 7 2016

Thế này nhé ^^

  • Ta có : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2\right)-bc-ac+c^2-3ab\right]\)

\(=\left[\left(a+b\right)+c\right].\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=a^3+b^3+c^3-3abc\)

  • \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

3 tháng 9 2020

a) VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3 + b3 ( đpcm )

b) VP = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3 - b3 ( đpcm )

Áp dụng

a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 

            = ( a - b )3 + 3ab( a - b )

Thế ab = 8 ; a - b = 12 ta được

( 12 )3 + 3.8.12 = 1728 + 288 = 2016

3 tháng 9 2020

Được cái khai triển ... 

a,  \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VP=a^3+3a^2b+3b^2a+b^3-3a^2b-3ab^2\)

Ta có : \(VP=a^3+b^3\left(đpcm\right)\)

b, \(a^3+b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Cách khác : \(\left(a-b\right)^3+3ab\left(a-b\right)=\left(a-b\right)^3+3ab\left(a-b\right)\)

Ta có đpcm 

Ta có : \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Thay ab = 8 và a - b = 12 :

\(12^3+3.8.12=2016\)

7 tháng 4 2018

Đây có phải là đề phân tích nhân tử không dạ anh!!! 

18 tháng 10 2018

đề câu này là gì vạy anh

22 tháng 7 2016

\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)

\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)

\(F=a^3+a^2-b^3+b^2+ab\)

\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)

\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)

\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)

\(F=2\left(a^2+ab+b^2\right)\)

\(F=2\left(a^2-2ab+b^2+3ab\right)\)

\(F=2\left(\left(a-b\right)^2+3ab\right)\)

\(F=2\left(1+3ab\right)\)

\(F=2+6ab\)

ta có x+y+z=0 

=> \(\left(x+y+z\right)^2=0\)

\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)

\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)

\(< =>x^2+y^2+z^2=0\)

\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)

thay x=y=z=0 vào 

\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)

\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)

\(K=1+0+1=2\)

\(\)

25 tháng 7 2016

thanks nhìu

2 tháng 6 2017

\(A^5-B^5=\left(A-B\right)\cdot\left(A^4+A^3\cdot B+A^2\cdot B^2+A\cdot B^3+B^4\right)\\ A^6-B^6=\left(A-B\right)\cdot\left(A^5+A^4\cdot B+A^3\cdot B^2+A^2\cdot B^3+A\cdot B^4+B^5\right)\\ A^{10}-B^{10}=\left(A-B\right)\cdot\left(A^9+A^8\cdot B+A^7\cdot B^2+A^6\cdot B^3+A^5\cdot B^4+A^4\cdot B^5+A^3\cdot B^6+A^2\cdot B^7+A\cdot B^8+B^9\right)\\ A^n-B^n=\left(A-B\right)\cdot\left(A^{n-1}+A^{n-2}\cdot B+A^{n-3}\cdot B^2+...+A^2\cdot B^{n-3}+A\cdot B^{n-2}+B^{n-1}\right)\)

2 tháng 6 2017

Tuấn Anh Phan Nguyễn Nguyễn Huy Tú Ace Legona Anh Triêt Võ Đông Anh Tuấn soyeon_Tiểubàng giải

Băng đội chuyên toán làm đi ạ!!!