Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^3-b^3+a^2+b^2-3ab\left(a-b\right)-3ab+ab\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2-3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)+49-3ab\left(a-b\right)\)
\(=\left(a-b\right)^2+3ab\left(a-b\right)+49-3ab\left(a-b\right)\)
\(=49+49=98\)
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
Ta có : \(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)
= \(a^3+a^2-b^3+b^2+ab-3ab\left(7+1\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2+b^2+ab-24ab\)
\(=7\left(a^2+b^2+ab\right)+a^2+b^2-23ab\)
\(=7a^2+7b^2+7ab+a^2+b^2-23ab\)
\(=8a^2-16ab+8b^2\)
\(=8\left(a^2-2ab+b^2\right)\)
\(=8\left(a-b\right)^2=8.7^2=392\)
Ghi đúng đề không zạ
Biến đổi vế trái thử nhé:
VT = \(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
= \(\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)
=\(\left(a-b\right)\left(a^2-2ab +b^2\right)\)
=\(\left(a-b\right)\left(a-b\right)^2\)
=\(\left(a-b\right)^3\)\(\ne\)VP
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
Theo đề ra ta có : a2+b2=2(8+ab)
⇔a2+b2-2ab=16
⇔(a-b)2=16
⇔a-b=4
Ta có P=a2(a+1)−b2(b−1)+ab−3ab(a−b+1)+64
⇔P=a3+a2-b3+b2+ab-3a2b+3ab2-3ab+64
⇔P=(a3-b3)+(a2-2ab+b2)-(3a2b-3ab2)+64
⇔P=(a-b)(a2+ab+b2)+(a-b)2-3ab(a-b)+64
⇔P=(a-b)(a2+ab+b2+1-3ab)+64
⇔P=4[(a-b)2+1]+64
⇔P=4(16+1)+64= 132
⇔P= 132